

Optimal Reliability Allocation

Yashwant K. Malaiya malaiya@cs.colostate.edu

Department of Computer Science Colorado State University

Reliability Allocation Problem

- Allocation the reliability values to subsystems
 - to minimize the total cost
 - while achieving the reliability target.
- Widely applicable
 - Software systems
 - Electrical systems
 - Mechanical systems
- Implementation choices
 - Discrete
 - Continuous

Reliability Allocation in Software

- A software system consists of many functional modules
 - Some reused, probably with lower defect densities
 - Some are new, with higher defect densities
 - Some are invoked more often
- To increase reliability
 - Additional testing
 - Replicated using n-version programming?
- What is the best strategy?

Optimal Reliability Allocation

- System composed of subsystems:
 - Subsystem cost a function of reliability
 - System reliability depends on subsystems
 - Failure rate as a reliability measure
- Commons systems: series and parallel
- Software system reliability
 - Fractional execution time
 - Lagrange multiplier: closed form optimal solution
 - Parameter dependence: size, defect density
- Apportionment & general approach

Problem Formulation

- System S has subsystems SSi, i = 1, ..n.
- Each subsystem SSi has a specific functionality (i.e. It is modeled as a Series System)
- Several choices with same functionality, but differently reliability levels.

•
$$C_i = f_i(R_i)$$

Minimize system cost

$$C_s = \sum_{i=1}^{n} C_i = \sum_{i=1}^{n} f_i(R_i)$$

ightharpoonup Subject to target system reliability R_{ST}

 \leq achieved reliability R_s

Cost minimization problem

Minimize
$$C_s = \sum_{i=1}^n C_i = \sum_{i=1}^n f_i(R_i)$$

Subject to $R_{ST} \leq R_s$

For a series system
$$R_S = \prod_{i=1}^n R_i$$

thus
$$R_{ST} \leq \prod_{i=1}^{n} R_i$$

Problem: Achieve a reliability equal to or better than the target values, while minimizing the overall cost.

Subsystem implementation choices

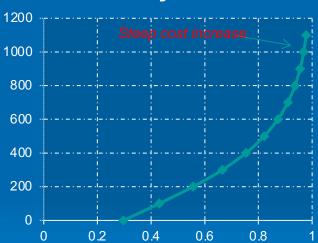
- Subsystem can be made more reliable by extending a continuous attribute
 - diameter of a column in building
 - time spent for software testing.
- Different vendors implementations of SSi at different costs.
- Multiple copies of SSi to achieve higher reliability.
 - double wheels of a truck
- Number of copies is constrained between one and a practical number because of implementation issues.

The Cost function

Cost function fi should satisfy these three conditions:

- > f_i is a positive function
- f_i is non-decreasing, thus higher reliability will come at a higher cost.
- f_i increases at a higher rate for higher values of R_i

Reliability vs Cost



Mettas A, Reliability allocation and optimization for complex systems. Pro Ann Reliability and Maintainability Symp, January 2000, 216-221

In terms of failure rate

> Taking log of both sides of the constraint, and since $R_i(t) = e^{-\lambda it}$

$$\ln(R_{ST}) \le \sum_{i=1}^{n} \ln(R_i) \qquad \lambda_{ST} \ge \sum_{i=1}^{n} \lambda_i$$

Stating cost as a function of failure rate

$$C_S = \sum_{i=1}^n C_i = \sum_{i=1}^n f_i(\lambda_i)$$

In terms of failure rate: SRGM

exponential software reliability growth model

$$\lambda_i(d) = \lambda_{0i} \exp(-\beta_i d)$$

- d is testing time
- λ_{0i} depends on initial defect density
- β_i depends inversely on program size
- Restating it as Cost function

$$d(\lambda_i) = \frac{1}{\beta_i} \ln \left(\frac{\lambda_{0i}}{\lambda_i} \right)$$

Assumes constant development cost, thus neglected

Series and Parallel Systems: linearlization

- Constraint Linearization simplifies the calculations.
- Series system $\ln(R_{ST}) \le \sum_{i=1}^{n} \ln(R_i)$
- Parallel system: log of unreliabilities

$$R_{ST} \le 1 - \prod_{i=1}^{n} (1 - R_i)$$
 $\ln(1 - R_{ST}) \ge \sum_{i=1}^{n} (\ln(1 - R_i))$

 Elegbede: If cost function satisfies 3 properties given above, the cost is optimal if all parallel components have the same cost.

Reliability Allocation for Software Systems

- > a block i is under execution for a fraction x_i of the time where $\Sigma x_i = 1$
- Reliability allocation problem

Minimize
$$C = \sum_{i=1}^{n} \frac{1}{\beta_i} \ln \left(\frac{\lambda_{0i}}{\lambda_i} \right)$$

subject to
$$\lambda_{ST} \ge \sum_{i=1}^{n} x_i \lambda_i$$

Solution using Lagrange multiplier

solutions for the optimal failure rates

$$\lambda_{1} = \frac{\frac{\lambda_{ST}}{x_{1}}}{\sum_{i=1}^{n} \frac{\beta_{1}}{\beta_{i}}} \quad \lambda_{2} = \frac{\beta_{1}x_{1}}{\beta_{2}x_{2}} \lambda_{1} \quad \cdots \quad \lambda_{n} = \frac{\beta_{1}x_{1}}{\beta_{n}x_{n}} \lambda_{1}$$

poptimal values of test times d₁ and dᵢ, i≠1

$$d_{1} = \frac{1}{\beta_{1}} \ln \left(\frac{\lambda_{10} x_{1} \sum_{i=1}^{n} \frac{\beta_{1}}{\beta_{i}}}{\lambda_{ST}} \right) \qquad d_{i} = \frac{1}{\beta_{i}} \ln \left(\frac{\lambda_{i0} \beta_{i} x_{i}}{\lambda_{1} \beta_{1} x_{1}} \right)$$
Color

Observations: Software reliability allocation

- A reused subsystem has a higher reliability because of past testing causing λ_i≥λ_{i0} and hence negative d_i.
 - Solution: apply allocation problem only to modules with positive d_i.
- ▶ If x_i is proportional to the subsystem code size, then optimal values of the post-test failure rates $\lambda_1, \ldots \lambda_n$ are equal.

An Illustration (next)

- > Five blocks software blocks I = 1 to 5.
- Parameters β and λ_{i0} values are based on what we know about the relationship between parameters and software size, defect density.
- X_i is presumed to be proportional to software size. d_i is the additional testing time.
- Analysis using Excel Solver obtains the optimal solution: note that final λi is same for all blocks.
 - Closed form solution will yield the same result.
 - Equal testing or testing only the block with most defects will not be optimal.

Ex: Optimal: Software with 5 blocks

 $\lambda_{ST} \le 0.04$

Block	B ₁	B_2	B_3	B ₄	B_5
Size KSLOC	1	2	3	10	20
Ini Defect density	10	10	10	15	20
β_i	4.59×10 ⁻³	2.30×10 ⁻³	1.53×10 ⁻³	4.59×10 ⁻⁴	2.30×10 ⁻⁴
λ_{i0}	0.046	0.046	0.046	0.069	0.092
x _i	0.028	0.056	0.083	0.278	0.556
Optimal λ_i	0.04	0.04	0.04	0.04	0.04
Optimal d _i	30.1	60.1	90.2	1184	3620

- Top 2 rows: problem construction, middle 3 The Problem, bottom 2 the solution.
- Observation: Optimal when all modules have the same failure rate!

Ex: Equal testing

 $\lambda_{ST} \le 0.04$

Block	B_1	B ₂	B_3	B ₄	B_5
Size KSLOC	1	2	3	10	20
Ini Defect density	10	10	10	15	20
β_i	4.59×10 ⁻³	2.30×10 ⁻³	1.53×10 ⁻³	4.59×10 ⁻⁴	2.30×10 ⁻⁴
λ_{i0}	0.046	0.046	0.046	0.069	0.092
x _i	0.028	0.056	0.083	0.278	0.556
λ_{i}	0.146	0.003	0.01	0.08	0.15
Equal d _i	1109.4	1109.4	1109.4	1109.4	1109.4

If Total test time is equally distributed for all 5 blocks, system will have significantly higher failure rate of 0.055 per unit time

Ex: Testing only B5

 $\lambda_{ST} \le 0.04$

Block	B_1	B_2	B_3	B ₄	B_5
Size KSLOC	1	2	3	10	20
Ini Defect density	10	10	10	15	20
β_i	4.59×10 ⁻³	2.30×10 ⁻³	1.53×10 ⁻³	4.59×10 ⁻⁴	2.30×10 ⁻⁴
λ_{i0}	0.046	0.046	0.046	0.069	0.092
x _i	0.028	0.056	0.083	0.278	0.556
λ_{i}	0.146	0.003	0.01	0.08	0.15
Equal d _i	0	0	0	0	5547

If Total test time is allowed only for block B5, system will have higher failure rate of 0.043 per unit time

Illustration using excel

- > See Excel sheet relallocationexamples.xls
- > Try changing entries.

Common Apportionment rules

- Equal reliability apportionment:
 - At end they all individually have failure rate equal to target failure rate for the system
- Complexity based apportionment
 - test time apportioned in proportion to the software size
- Impact based apportionment:
 - A component executed more frequently, or more critical, should be assigned more resources

Reliability Allocation for Complex Systems

- An iterative approach
 - Design the system using functional subsystems.
 - Perform an initial apportionment of cost or reliability attributes based on suitable apportionment rules or preliminary computation.
 - Predict system reliability.
 - Is reallocation feasible and will enhance the objective function. If so, perform reallocation.
 - Repeat until optimality is achieved.
 - Does this meets objectives? If not, return to step 1 and revising the design at a higher level..

Conclusions

- Reliability allocation: consider how cost varies with reliability.
- Software testing:
 - cost ∞ log(1/failure rate)
 - β1 ∞ size
- Reliability allocation in systems with replicated subsystems can encounter correlated failures and thus would need a more careful modeling.

