

Information redundancy: Outline

- Using a parity bit
- Codes \& code words
- Hamming distance
- Error detection capability
- Error correction capability
- Parity check codes and ECC systems
- Cyclic codes
- Polynomial division and LFSRs

Redundancy at the Bit level

- Errors can bits to be flipped during transmission or storage.
- An extra parity bit can detect if a bit in the word has flipped.
- Some errors an be corrected if there is enough redundancy such that the correct word can be guessed.
- John Tukey (Proncetpn/AT\&T): "bit" 1948
- Hamming codes: 1950s
- Teletype, ASCII: 1960: 7+1 Parity bit
- Cyclic Codes: 1960

Count as a signature

Redundancy at the Bit level

Even/odd parity (1)

- Errors can bits to be flipped during transmission/storage.
- Even/odd parity:
- is basic method for detecting if one bit (or an odd number of bits) has been switched by accident.
- Odd parity:
- The number of 1-bit must add up to an odd number
- Even parity:
- The number of 1-bit must add up to an even number

Even/odd parity (2)

- It is known which parity it is being used in the system.
- If it uses an even parity:
- If the number of of 1-bit add up to an odd number then it knows there was an error:
- If it uses an odd:
- If the number of of 1 -bit add up to an even number then it knows there was an error:
- However, If an even number of 1-bit is flipped the parity will still be the same. But an error occurs
- The even/parity can't this detect this error:

Even/odd parity (3)

- It is useful when an odd number of 1-bits is flipped.
- Suppose we have an 7-bit binary word (7-digits).
- Need to add 1 (parity bit) to the binary word.
- You now have 8 digit word.
- However, the computer knows that the added bit is a parity bit and therefore ignore it.
- If $\operatorname{Pr}\{1$ bit error $\}=0.01$,
- $\operatorname{Pr}\{2$ errors $\}=0.01 \times 0.01=0.0001$ if if errors are statistically independent

Example (1)

- Suppose you receive a binary bit word " 0101 " and you know you are using an odd parity.
- Is the binary word corrupted?
- The answer is yes:
- There are 2 1-bit, which is an even number
- We are using an odd parity
- So there must have an error.
- Do we know which bit is in error?
- No, not enough redundancy.
- Correction not possible

Parity Bit

- A single bit is appended to each data chunk
- makes the number of 1 bits even/odd
- Example: even parity
- $1000000(1)$
- $1111101(0)$
- 1001001(1)
- Example: odd parity
- $1000000(0)$
- $1111101(1)$
- 1001001(0)

Parity Checking

- Assume we are using even parity with 7-bit ASCII.
- The letter V in 7-bit ASCII is encoded as 0110101.
- How will the letter V be transmitted?
- Because there are four 1s (an even number), parity is set to zero.
- This would be transmitted as: 00110101.
- If we are using an odd parity:
- The letter V will be transmitted as 10110101

Formal discussion: Coding Theory

- The following slides discuss coding theory in formal terms.

Coding theory: Overview

- Often applied to
- Info transfer: often serial communication thru a channel
- Info storage
- Hamming distance: error detection \& correction capability
- Linear separable codes, hamming codes
- Cyclic codes

Error Detecting/Correcting Codes (EDC/ECC)

- Code: subset of all possible vectors
- Block codes: all vectors are of the same length
- Separable (systematic) codes: check-bits can be separately identified.
(n, k) code: k info bits, $\mathrm{r}=\mathrm{n}-\mathrm{k}$ check bits
- Linear Codes: Check-bits are linear combinations of info bits. Linear combination of code words is a code word.
- Code words: are legal part of the code.

Hamming Distance

- Hamming distance between 2 code words X, Y

$$
\mathrm{D}(\mathrm{x}, \mathrm{y})=\Sigma\left(\mathrm{x}_{\mathrm{k}} \oplus \mathrm{y}_{\mathrm{k}}\right)
$$

- $\mathrm{D}(001,010)=2$
- $\mathrm{D}(000,111)=3$

Hamming distance :
number of bits
that are different

- Minimum distance: min of all hamming distance between all possible pairs of code words.

Ex 1: consider code:
000
011
101
110

Min distance=2

Detection Capability

Ex 1: consider code:
000
011
101
110

- All single bit errors result in non-code words. Thus all single-bit errors are detectable.
- Error detection capability: min Hamming dist $\mathrm{d}_{\text {min }}, \mathrm{p}$: number of errors that can be detected

$$
\mathrm{p}+1 \leq \mathrm{d}_{\min } \text { or } \mathrm{p}_{\max }=\mathrm{d}_{\min }-1
$$

Errors Correction Capability

Ex 2: Consider a code 000
111

- Assume single-bit errors are more likely than 2-bit errors.
- In Ex 2 all single bit errors can be corrected. All 2 bit errors can be detected.
- Error correction capability: t: number of errors that can be corrected:
$2 \mathrm{t}+1 \leq \mathrm{d}_{\text {min }} \quad$ or $\quad \mathrm{t}_{\text {max }}=\left\lfloor\left(\mathrm{d}_{\text {min }}-1\right) / 2\right\rfloor$

Parity Check Codes

- Parity Check Codes are linear block codes
- Linear: addition: \oplus, multiplication: AND
- Property: $\mathrm{d}_{\text {min }}=$ weight of lightest non-zero code word
- $\mathrm{G}_{\mathrm{kxn}}$: Generator matrix of a (n, k) code: rows are a set of basis vectors for the code space.

$$
\text { i. } G=v \quad \text { i: } 1 \times \mathrm{k} \text { info, } \mathrm{v}: 1 \times \mathrm{n} \text { code word }
$$

- For systematic code: $\mathrm{G}=\left[\mathrm{I}_{\mathrm{k}} \mathrm{P}\right] \quad \mathrm{I}_{\mathrm{k}:} \mathrm{k} \times \mathrm{k}, \mathrm{P}: \mathrm{k} \times(\mathrm{n}-\mathrm{k})$ Ex: k=3, r=n-k=2

$$
\begin{aligned}
& \text { EX: } \\
& \text { Coblorato }
\end{aligned}
$$

$\left.G=\begin{array}{lll:ll}1 & 0 & 0 & 1 & 1 \\ 0 & 1 & 0 & 1 & 1 \\ 0 & 0 & 1 & 1 & 0\end{array}\right]$

Convention:
n: total bits
k : information bits
$\mathrm{r}=\mathrm{n}-\mathrm{k}$: check bits

Parity Check Codes: Code Word Generation

- Ex: info $\mathrm{i}=(101)$

$$
\mathrm{G}=\left[\begin{array}{lll:l}
1 & 0 & 0 & 1 \\
0 & 1 & 0 & 1 \\
0 & 0 & 1 & 1 \\
0
\end{array}\right]
$$

then

$$
\begin{aligned}
& \mathrm{v}=\left(\begin{array}{lll}
1 & 0 & 1
\end{array}\right)\left[\begin{array}{lll:l}
1 & 0 & 0 & 1 \\
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & 1 \\
1 & 0
\end{array}\right] \\
& \mathrm{v}=\underbrace{1}_{\text {info }} \begin{array}{l}
0 \\
1
\end{array} \underbrace{0}_{\text {check }} 1
\end{aligned}
$$

Parity Check Codes: Parity Check Matrix H

- If v is a code word: $\mathrm{v} \cdot \mathrm{H}^{\mathrm{t}}=0$
$\mathrm{H}^{\mathrm{t}}: \mathrm{n} \times \mathrm{r}, \mathbf{0}: 1 \times \mathrm{r}$
- Corrupted information: $\mathrm{w}=\mathrm{v}+\mathrm{e}$ all $1 \times n$

$$
\begin{aligned}
\mathrm{w} \cdot \mathrm{H}^{\mathrm{t}} & =(\mathrm{v}+\mathrm{e}) \mathrm{H}^{\mathrm{t}}=0+\mathrm{e} \cdot \mathrm{H}^{\mathrm{t}} \\
& =\mathrm{s} \text { syndrome of error }
\end{aligned}
$$

Syndrome is 1 xr
r: check bits

- For t-error correcting code, syndrome is unique for up to t errors \& can be used for correction.
- For systematic codes $\mathrm{G} . \mathrm{H}^{\mathrm{t}}=0$,

$$
\mathrm{H}=\left[-\mathrm{P}^{\mathrm{t}} \mathrm{I}_{\mathrm{r}}\right]
$$

Parity Check Matrix: Ex

$$
\begin{aligned}
& \mathrm{v}=\left(\begin{array}{lllll}
1 & 0 & 1 & 0 & 1
\end{array}\right)
\end{aligned}
$$

Hamming Codes

- Single error correcting requiring $\mathrm{d}_{\min }=3$
- Syndrome : s=v. H^{T},

$$
1 \times \mathrm{r}=1 \times \mathrm{n} . \mathrm{n} \times \mathrm{r}
$$

- $\mathrm{S}=0$ normal, rest $2^{\mathrm{r}}-1$ syndromes indicate error. Can correct one error if syndrome is unique for each error.
- Thus, Hamming codes must have property: $\mathrm{n} \leq 2^{\mathrm{r}}-1$

Info Word Size	Min Check bits	Total bits	Overhead
4	3 (why not 2?)	7	75%
8	4	12	50
16	5	21	31
32	6	38	19

Convention: n : total bits
k : information bits r: check bits

Hamming codes: Ex: Non-positioned

$$
\begin{aligned}
\mathbf{G}= & \left.\right] \\
\mathbf{H}= & \left.\begin{array}{llll:lll}
\mathbf{1} & \mathbf{1} & \mathbf{0} & \mathbf{1} & \mathbf{1} & \mathbf{0} & \mathbf{0} \\
\mathbf{1} & \mathbf{0} & \mathbf{1} & \mathbf{1} & \mathbf{0} & \mathbf{1} & \mathbf{0} \\
\mathbf{0} & \mathbf{1} & \mathbf{1} & \mathbf{1} & \mathbf{0} & \mathbf{0} & \mathbf{1}
\end{array}\right]
\end{aligned}
$$

$$
(1110000) \quad \mathrm{H}^{\mathrm{T}}=\quad(000)
$$

$$
(0110000) \quad \mathrm{H}^{\mathrm{T}}=\quad(110)
$$

$$
(1111000) \quad \mathrm{H}^{\mathrm{T}}=\quad(111)
$$

Error in	d3	d0	d1	c1	d2	c2	c3
syndrome	111	110	101	100	011	010	001

ECC System

- Ex: Intel, AMD ECC chips. Cascadable 16-64 bits.
- All 1-bit errors corrected.
- Automatic error scrubbing using read-modify-write cycle.

BCH Cyclic Codes

- Cyclic Codes: parity check codes such that cyclic shift of a code word is also a code word.
- Polynomial: to represent bit positions
(n, k) cyclic code \Rightarrow generator polynomial of degree $\mathrm{n}-\mathrm{k}$

$$
\mathrm{v}(\mathrm{x})=\mathrm{M}(\mathrm{x}) \cdot \mathrm{G}(\mathrm{x}) \quad \text { degrees }(\mathrm{n}-1)=(\mathrm{k}-1)(\mathrm{n}-\mathrm{k})
$$

- Ex: $G(x)=x^{4}+x^{3}+x^{2}+1 \Rightarrow$ (11101) degree 4 (7,3) cyclic code

Message	Corres. $\mathrm{v}(\mathrm{x})$	codeword
$000(0)$	0	0000000
$110\left(\mathrm{x}^{2}+\mathrm{x}\right)$	$\mathrm{x}^{6}+\mathrm{x}^{3}+\mathrm{x}^{2}+\mathrm{x}$	1001110
$111\left(\mathrm{x}^{2}+\mathrm{x}+1\right)$	$\mathrm{x}^{6}+\mathrm{x}^{4}+\mathrm{x}+1$	10100011
$\left(\mathrm{x}^{2}+\mathrm{x}\right)\left(\mathrm{x}^{4}+\mathrm{x}^{3}+\mathrm{x}^{2}+1\right)$ $=\left(\mathrm{x}^{6}+0 . \mathrm{x}^{5}+0 . \mathrm{x}^{4}+\mathrm{x}^{3}+\mathrm{x}^{2}+\mathrm{x}\right)$ $=\left(\mathrm{x}^{6}+\mathrm{x}^{3}+\mathrm{x}^{2}+\mathrm{x}\right)$		

Systematic Cyclic Codes

- Consider $x^{n-k} M(x)=Q(x) G(x)+C(x)$ Quotient $\mathrm{Q}(\mathrm{x})$: degree $\mathrm{k}-1$, remainder $\mathrm{C}(\mathrm{x})$:degree $\mathrm{n}-\mathrm{k}-1$
- Then $\quad x^{n-k} M(x)-C(x)=Q(x) G(x)$, thus $x^{n-k} M(x)-C(x)$ is a code word.
- Shift message ($\mathrm{n}-\mathrm{k}$) positions to the left
- Fill vacated bits by remainder
- Polynomial division to get remainder

Convention:
n : total bits
k : information bits r: check bits

- Note computation is linear

Systematic Cyclic Codes

- Ex: $G(x)=x^{4}+x^{3}+x^{2}+1 \quad n-k=4, n=7$

message	$\mathrm{x}^{4} \mathrm{M}(\mathrm{x})$	Remainder $\mathrm{C}(\mathrm{x})$	codeword
000	$0 \quad(0000000)$	$0(0000)$	0000000
110	$\mathrm{x}^{6}+\mathrm{x}^{5}(1100000)$	$\mathrm{X}^{3}+1(1001)$	1101001
111	$\mathrm{x}^{6}+\mathrm{x}^{5}+\mathrm{x}^{4}(1110000)$	$\mathrm{x}^{2}(0100)$	1110100

- An error-free codeword divided by generator polynomial will give remainder 0.

Polynomial division

- Ex: $G(x)=x^{4}+x^{3}+x^{2}+1 \quad n-k=4, n=7$, $M=(110), \quad x^{4} M(x)$ is $x^{6}+x^{5}$, remainder is $x^{3}+1$.

$$
\begin{aligned}
& \begin{array}{llllll}
x^{4} & +x^{3} & +x^{2} & +1 & x^{2} & +1 \\
\begin{array}{llll}
x^{6} & +x^{5} & & \\
& & x^{6} & +x^{5}
\end{array}+x^{4} & +x^{2} \\
\cline { 3 - 5 } & & & x^{4} & +x^{2}
\end{array} \\
& \mathrm{x}^{4} \quad+\mathrm{x}^{3}+\mathrm{x}^{2} \quad+1 \\
& \text { - Code word then is } \\
& \text { (110 } \underbrace{1001} \text {) } \\
& \text { remainder }
\end{aligned}
$$

LFSR: Poly. Div. Circuit

- Ex: $G(x)=x^{4}+x^{3}+x^{2}+1 \quad n-k=4, C(x)$ of degree $n-k-1=3$

1. Clear shift register.
2. Shift ($n-k$) message bits in.
3. K shift lefts (hence shift out k bits of quotient)
4. Disable feedback, shift out (n-k) bit remainder.

- Linear feedback shift Register used for both encoding and checking.

LFSRs

- Remainder is a signature. If good and faulty message have same signature, there is an aliasing error.
- Error detection properties: Smith 1980
- For $\mathrm{k} \rightarrow \infty, \mathrm{P}$ \{an aliasing error $\}$ is $2^{-(\mathrm{n}-\mathrm{k})}$, provided all error patterns are equally likely.
- All single errors are detectable, if poly has 2 or more non-zero coefficients.
- All (n-k) bit burst errors are detected, if coefficient of x^{0} is 1 .
- Other LFSR implementations: parallel inputs, exors only in the feedback paths. n-k: number of check bits

Autonomous LFSRs (ALFSR)

- ALFSR: LFSR with input=0.
- If polynomial is primitive (iireducible), its state will cycle through all ($2^{\mathrm{n}-\mathrm{k}-1}-1$) combinations, except ($0,0, . .0,0$).
- A list of polynomials of various degrees is available.
- Alternatives to ALFSR:
- GLFSR
- Antirandom

Some resources

- http://www-math.ucdenver.edu/~wcherowi/courses/m5410/m5410fsr.html

Linear Feedback Shift Registers, Golomb's Principles

- http://theory.les.mit.edu/~madlhu/FT01/

Algorithmic Introduction to Coding Theory

An interesting property:

- Theorem 1 : Let \mathbf{H} be a parity-check matrix for a linear (n, k)-code \mathbf{C} defined over F. Then every set of $\mathbf{s - 1}$ columns of H are linearly independent if and only if \mathbf{C} has minimum distance at least s.

