
March 25, 2021 1

Fault Tolerant Computing
CS 530

Information redundancy: Coding theory

Yashwant K. Malaiya
Colorado State University

3/25/21 2Fault Tolerant Computing ©YKM

Information redundancy: Outline

• Using a parity bit
• Codes & code words
• Hamming distance

§ Error detection capability
§ Error correction capability

• Parity check codes and ECC systems
• Cyclic codes

§ Polynomial division and LFSRs

Redundancy at the Bit level

• Errors can bits to be flipped during transmission or
storage.

• An extra parity bit can detect if a bit in the word has
flipped.

• Some errors an be corrected if there is enough redundancy
such that the correct word can be guessed.

• John Tukey (Proncetpn/AT&T): “bit” 1948
• Hamming codes: 1950s
• Teletype, ASCII: 1960: 7+1 Parity bit
• Cyclic Codes: 1960 304,805 letters in the Torah:

Count as a signature

Redundancy at the Bit level

Even/odd parity (1)

• Errors can bits to be flipped during
transmission/storage.

• Even/odd parity:
§ is basic method for detecting if one bit (or an odd

number of bits) has been switched by accident.
• Odd parity:

§ The number of 1-bit must add up to an odd number
• Even parity:

§ The number of 1-bit must add up to an even number

Even/odd parity (2)

• It is known which parity it is being used in the system.
• If it uses an even parity:

§ If the number of of 1-bit add up to an odd number then
it knows there was an error:

• If it uses an odd:
§ If the number of of 1-bit add up to an even number then

it knows there was an error:
• However, If an even number of 1-bit is flipped the parity

will still be the same. But an error occurs
§ The even/parity can’t this detect this error:

Even/odd parity (3)

• It is useful when an odd number of 1-bits is flipped.
• Suppose we have an 7-bit binary word (7-digits).

§ Need to add 1 (parity bit) to the binary word.
§ You now have 8 digit word.
§ However, the computer knows that the added bit is a

parity bit and therefore ignore it.

• If Pr{1 bit error}=0.01,
§ Pr{2 errors} = 0.01x0.01 = 0.0001 if if errors are

statistically independent

Example (1)
• Suppose you receive a binary bit word “0101” and

you know you are using an odd parity.
• Is the binary word corrupted?
• The answer is yes:

• There are 2 1-bit, which is an even number
• We are using an odd parity
• So there must have an error.

• Do we know which bit is in error?
§ No, not enough redundancy.
§ Correction not possible

Parity Bit

• A single bit is appended to each data chunk
§ makes the number of 1 bits even/odd

• Example: even parity
§ 1000000(1)
§ 1111101(0)
§ 1001001(1)

• Example: odd parity
§ 1000000(0)
§ 1111101(1)
§ 1001001(0)

Parity Checking

• Assume we are using even parity with 7-bit ASCII.
• The letter V in 7-bit ASCII is encoded as 0110101.
• How will the letter V be transmitted?

§ Because there are four 1s (an even number), parity is set to zero.
§ This would be transmitted as: 00110101.

• If we are using an odd parity:
§ The letter V will be transmitted as 10110101

Formal discussion: Coding Theory

• The following slides discuss coding theory in
formal terms.

3/25/21 11Fault Tolerant Computing ©YKM

3/25/21 12Fault Tolerant Computing ©YKM

Coding theory: Overview

• Often applied to
§ Info transfer: often serial communication thru a channel
§ Info storage

• Hamming distance: error detection & correction
capability

• Linear separable codes, hamming codes
• Cyclic codes

3/25/21 13Fault Tolerant Computing ©YKM

Error Detecting/Correcting Codes
(EDC/ECC)

• Code: subset of all possible vectors
§ Block codes: all vectors are of the same length
§ Separable (systematic) codes: check-bits can be

separately identified.
(n,k) code: k info bits, r = n-k check bits

§ Linear Codes: Check-bits are linear combinations of
info bits. Linear combination of code words is a code
word.

• Code words: are legal part of the code.

C:10/30

3/25/21 14Fault Tolerant Computing ©YKM

Hamming Distance
• Hamming distance between 2 code words X, Y

D(x,y)=S(xkÅyk)
§ D(001,010)=2
§ D(000,111)=3

• Minimum distance: min of all hamming distance between
all possible pairs of code words.

Ex 1: consider code:
000
011
101
110

Min distance=2

Hamming distance :
number of bits

that are different

3/25/21 15Fault Tolerant Computing ©YKM

Detection Capability

• All single bit errors result in non-code words. Thus all
single-bit errors are detectable.

• Error detection capability: min Hamming dist dmin, p:
number of errors that can be detected

p+1£ dmin or pmax = dmin - 1

000 001

100

010

011

111

101

110
Ex 1: consider code:

000
011
101
110

3/25/21 16Fault Tolerant Computing ©YKM

Errors Correction Capability

• Assume single-bit errors are more likely than 2-bit errors.
• In Ex 2 all single bit errors can be corrected. All 2 bit

errors can be detected.
• Error correction capability: t: number of errors that can

be corrected:
2t+1 £ dmin or tmax=ë(dmin-1)/2û

Ex 2: Consider a
code

000
111

000 001

100

010

011

111

101

110

Proof?

3/25/21 17Fault Tolerant Computing ©YKM

Parity Check Codes
• Parity Check Codes are linear block codes
• Linear: addition: Å, multiplication: AND
• Property: dmin = weight of lightest non-zero code

word
• Gkxn: Generator matrix of a (n,k) code: rows are a set of

basis vectors for the code space.

i.G = v i: 1´k info, v :1´n code word

• For systematic code: G=[Ik P] Ik: k´k, P: k´(n-k)

Ex: k=3, r=n-k=2
1 0 0 1 1

G = 0 1 0 1 1
0 0 1 1 0

Convention:
n: total bits
k: information bits
r = n-k : check bits

3/25/21 18Fault Tolerant Computing ©YKM

Parity Check Codes: Code Word Generation

• Ex: info i = (1 01)

then

1 0 0 1 1
G = 0 1 0 1 1

0 0 1 1 0

1 0 0 1 1
v = (1 0 1) 0 1 0 1 1

0 0 1 1 0

v = (1 0 1 0 1)
info check

Note: Matrix
multiplication:
(dimensions)
a´b. b´c= a´c

3/25/21 19Fault Tolerant Computing ©YKM

Parity Check Codes: Parity Check Matrix H

• If v is a code word: v.Ht = 0 Ht: n´r, 0: 1´r

• Corrupted information: w = v+e all 1´n

w. Ht = (v+e) Ht= 0+e. Ht

=s syndrome of error
• For t-error correcting code, syndrome is unique

for up to t errors & can be used for correction.
• For systematic codes G. Ht = 0,

H=[- Pt Ir]

Syndrome is 1xr
r: check bits

3/25/21 20Fault Tolerant Computing ©YKM

Parity Check Matrix: Ex
1 0 0 1 1

v = (1 0 1) 0 1 0 1 1
0 0 1 1 0

v = (1 0 1 0 1)

H=
1 1 1 1 0

1 1 0 0 1
1 1

1 1
(1 0 1 0 1) 1 0 = (0 0)

1 0
0 1

v.Ht is
0 1

c11/6

3/25/21 21Fault Tolerant Computing ©YKM

Hamming Codes

• Single error correcting requiring dmin = 3
• Syndrome : s = v.HT, 1´r= 1´n. n´r

§ S = 0 normal, rest 2r-1 syndromes indicate error. Can
correct one error if syndrome is unique for each error.

§ Thus, Hamming codes must have property: n £ 2r-1

Info Word Size Min Check bits Total bits Overhead
4 3 (why not 2?) 7 75%
8 4 12 50
16 5 21 31
32 6 38 19

C:10/30

Convention:
n: total bits
k: information bits
r: check bits

3/25/21 22Fault Tolerant Computing ©YKM

Hamming codes: Ex: Non-positioned
d0 d3 c1 c3

1 0 0 0 1 1 0

G = 0 1 0 0 1 0 1

0 0 1 0 0 1 1

0 0 0 1 1 1 1

1 1 0 1 1 0 0

H = 1 0 1 1 0 1 0

0 1 1 1 0 0 1

(1110)®(1110 000)

1 1 0

1 0 1

0 1 1

HT = 1 1 1

1 0 0

0 1 0

0 0 1

i v

(1110 000) HT= (000)
(0110 000) HT= (110)
(1111 000) HT= (111)

Error in d3 d0 d1 c1 d2 c2 c3

syndrome 111 110 101 100 011 010 001

data check

“Positioned” Hamming Code

check

3/25/21 23Fault Tolerant Computing ©YKM

ECC System

• Ex: Intel, AMD ECC chips. Cascadable 16-64 bits.
• All 1-bit errors corrected.
• Automatic error scrubbing using read-modify-write

cycle.

buffer

Info

check

Memory

Syndrome
Generation/
correction

16

6

6

syndrome

Can also
identify some
uncorrectable

errors

Check-bit generator

C:10/30

3/25/21 24Fault Tolerant Computing ©YKM

BCH Cyclic Codes
• Cyclic Codes: parity check codes such that cyclic shift of a code

word is also a code word.
• Polynomial: to represent bit positions

(n,k) cyclic code Þ generator polynomial of degree n-k
v(x)=M(x).G(x) degrees (n-1)=(k-1)(n-k)

• Ex: G(x) = x4+x3+x2+1 Þ (11101) degree 4 (7,3) cyclic code

Prof R.C. Bose, (-1987)
Colorado State

Message Corres. v(x) codeword
000 (0) 0 0000 000
110 (x2+x) x6+x3+x2+x 1001 110
111 (x2+x+1) x6+x4+x+1 1010 0011

(x2+x)(x4+x3+x2+1)
=(x6+0.x5+0.x4+x3+x2+x)

=(x6+x3+x2+x)

3/25/21 25Fault Tolerant Computing ©YKM

Systematic Cyclic Codes

• Consider xn-kM(x) = Q(x)G(x)+ C(x)
Quotient Q(x): degree k-1, remainder C(x):degree n-k-1

• Then xn-kM(x)-C(x) = Q(x)G(x),
thus xn-kM(x)-C(x) is a code word.

§ Shift message (n-k) positions to the left
§ Fill vacated bits by remainder

• Polynomial division to get remainder
§ Note computation is linear

Convention:
n: total bits
k: information bits
r: check bits

3/25/21 26Fault Tolerant Computing ©YKM

Systematic Cyclic Codes

• Ex: G(x)=x4+x3+x2+1 n-k=4, n=7

message x4M(x) Remainder
C(x)

codeword

000 0 (0000 000) 0(0000) 000 0000
110 x6+x5 (1100000) X3+1(1001) 110 1001
111 x6+x5+x4(1110000) x2(0100) 111 0100

• An error-free codeword divided by generator
polynomial will give remainder 0.

c10/30

Polynomial division

3/25/21 27Fault Tolerant Computing ©YKM

Polynomial division

• Ex: G(x)=x4+x3+x2+1 n-k=4, n=7,
M=(110), x4M(x) is x6+x5, remainder is x3+1.

x2 +1

x4 +x3 +x2 +1 x6 +x5

x6 +x5 +x4 +x2

x4 +x2

x4 +x3 +x2 +1

x3 +1• Code word then is
(110 1001)

remainder

C10/30

3/25/21 28Fault Tolerant Computing ©YKM

LFSR: Poly. Div. Circuit
• Ex: G(x)=x4+x3+x2+1 n-k=4, C(x) of degree n-k-1=3

C3 C2 C1 C0 ++ +

a0=1a2=1a3=1
Input string

msb first

quotient

1. Clear shift register.
2. Shift (n-k) message bits in.
3. K shift lefts (hence shift out k bits of quotient)
4. Disable feedback, shift out (n-k) bit remainder.

• Linear feedback shift Register used for both encoding and
checking.

3/25/21 29Fault Tolerant Computing ©YKM

LFSRs
• Remainder is a signature. If good and faulty

message have same signature, there is an aliasing
error.

• Error detection properties: Smith 1980
§ For k®¥, P{an aliasing error} is 2-(n-k), provided all

error patterns are equally likely.
§ All single errors are detectable, if poly has 2 or more non-zero

coefficients.

§ All (n-k) bit burst errors are detected, if coefficient of x0 is 1.
• Other LFSR implementations: parallel inputs,

exors only in the feedback paths.

Not
impressive

n-k: number of check bits

3/25/21 30Fault Tolerant Computing ©YKM

Autonomous LFSRs (ALFSR)

• ALFSR: LFSR with input=0.
• If polynomial is primitive (irreducible), its state will

cycle through all (2n-k-1-1) combinations, except
(0,0,..0,0).

• A list of polynomials of various degrees is
available.

• Alternatives to ALFSR:
§ GLFSR
§ Antirandom

3/25/21 31Fault Tolerant Computing ©YKM

Some resources

• http://www-math.ucdenver.edu/~wcherowi/courses/m5410/m5410fsr.html
Linear Feedback Shift Registers, Golomb's Principles

• http://theory.lcs.mit.edu/~madhu/FT01/
Algorithmic Introduction to Coding Theory

An interesting property:

• Theorem 1 : Let H be a parity-check matrix for a linear (n,k)-code C
defined over F. Then every set of s-1 columns of H are linearly
independent if and only if C has minimum distance at least s.

http://www-math.ucdenver.edu/~wcherowi/courses/m5410/m5410fsr.html
http://theory.lcs.mit.edu/~madhu/FT01/

