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Information redundancy: Qutline

» Using a parity bit

Codes & code words

 Hamming distance
= Error detection capability

= Error correction capability

Parity check codes and ECC systems

* Cyclic codes
« Polynomial division and LFSRs
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Redundancy at the Bit level

Errors can bits to be flipped during transmission or
storage.

An extra parity bit can detect if a bit in the word has
flipped.

Some errors an be corrected 1f there 1s enough redundancy
such that the correct word can be guessed.

John Tukey (Proncetpn/AT&T): “bit” 1948
Hamming codes: 1950s
Teletype, ASCII: 1960: 7+1 Parity bit

CYCHC Codes: 1960 304,805 letters in the Torah:

Count as a signature




Redundancy at the Bit level

A Quick Byte
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Even/odd parity (1)

Errors can bits to be flipped during
transmission/storage.

Even/odd parity:

= 1s basic method for detecting if one bit (or an odd
number of bits) has been switched by accident.

Odd parity:

= The number of 1-bit must add up to an odd number
Even parity:

= The number of 1-bit must add up to an even number




Even/odd parity (2)

It 1s known which parity it i1s being used in the system.
e If 1t uses an even parity:

= [f the number of of 1-bit add up to an odd number then
it knows there was an error:

e [f1t uses an odd:

= [f the number of of 1-bit add up to an even number then
it knows there was an error:

 However, If an even number of 1-bit 1s flipped the parity
will still be the same. But an error occurs

= The even/parity can’ t this detect this error:




Even/odd parity (3)

e It is useful when an number of 1-bits is flipped.
* Suppose we have an 7-bit binary word (7-digits).

= Need to add 1 (parity bit) to the binary word.

= You now have 8 digit word.

= However, the computer knows that the added bit 1s a
parity bit and therefore ignore it.

o If Pr{l bit error}=0.01,

= Pr{2 errors} = 0.01x0.01 = 0.0001 1f 1f errors are
statistically independent




Example (1)

* Suppose you receive a binary bit word “0101" and
you know you are using an odd parity.

* Is the binary word corrupted?
e The answer 1s yes:

e There are 2 1-bit, which is an even number
* We are using an odd parity

* So there must have an error.

Do we know which bit 1s 1n error?
= No, not enough redundancy.

= Correction not possible




Parity Bit

» A single bit 1s appended to each data chunk
= makes the number of 1 bits even/odd
« Example: even parity
- 1000000 (1)
= 1111101 (0)
= 1001001 (1)
« Example: odd parity
- 1000000 (0)
= 1111101 (1)
= 1001001 (0)

...........



Parity Checking

« Assume we are using even parity with 7-bit ASCII.

e The letter V in 7-bit ASCII 1s encoded as 0110101.
» How will the letter V be transmitted?

= Because there are four Is (an even number), parity is set to zero.
= This would be transmitted as: 00110101.

e If we are using an ;
= The letter V will be transmitted as 10110101

Co,\ ONEA0
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Formal discussion: Coding Theory

e The following slides discuss coding theory in
formal terms.
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Coding theory: Overview

e Often applied to

= Info transfer: often serial communication thru a channel

= Info storage
 Hamming distance: error detection & correction
capability
* Linear separable codes, hamming codes

* Cyclic codes
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Error Detecting/Correcting Codes
(EDC/ECC)

* Code: subset of all possible vectors
= Block codes: all vectors are of the same length

= Separable (systematic) codes: check-bits can be
separately 1dentified.
(n,k) code: k info bits, r = n-k check bits

= Linear Codes: Check-bits are linear combinations of
info bits. Linear combination of code words 1s a code
word.

* Code words: are legal part of the code.
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Hamming Distance

« Hamming distance between 2 code words X, Y

D(x,y)=2(xDyy) Hamming distance :
= D(001,010)=2 number of bits
- D(000,111)=3 that are different

« Minimum distance: min of all hamming distance between
all possible pairs of code words.

Ex 1: consider code:
000
011 L. B
101 Min distance=2

110
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Detection Capability

110 11
100 / / Ex 1: consider code:
101 000
010 011
/011 101
000 001 110

« All single bit errors result in non-code words. Thus all
single-bit errors are detectable.

e Error detection capability: min Hamming dist d ;,,, p:

number of errors that can be detected

p—|_1S dmin O Pmax = dmin -1
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Errors Correction Capability

Ex 2: Consider a 110 111
code 100/
000 101
111 010
o
000 001

* Assume single-bit errors are more likely than 2-bit errors.

« In Ex 2 all single bit errors can be corrected. All 2 bit
errors can be detected.

* Error correction capability: t: number of errors that can
be corrected:

2t+1 <d.;, or

tmax:|—(dmin' 1 )/ 2J
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Parity Check Codes

Parity Check Codes are linear block codes
Linear: addition: ®, multiplication: AND

Property: d, ., = weight of lightest non-zero code
word

Gir. Generator matrix of a (n,k) code: rows are a set of
basis vectors for the code space.

1.G=v i: 1xk info, v :1xn code word
For systematic code: G=[I; P] I, kxk, P: kx(n-k)
Ex: k=3, r=n-k=2

Convention:

n: total bits

k: information bits
r = n-k : check bits
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Parity Check Codes: Code Word Generation

. . 1 0 O0:1 1
 EX:infoi=(101)
G = O I O0:1 1
O 0 1:1 O
then 10 0i1 1
v= (1 01 |01 0 1 1
O 0 1:1 O
v o= Q¢ 0 10 1 Note: Matrix
' - \ Y 4 . . .
info check multiplication:
(dimensions)
axb. bxc= axc
@;OJ LQ)_FE,LO..‘\Q ) 3/25/21 Fault Tolerant Computing OYKM
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Parity Check Codes: Parity Check Matrix H

If visacode word: v.H'=0 Ht: nxr, 0: 1xr

Corrupted information: w=v+e all Ixn
w. H' = (vt+e) H= 0+e. H! |
Syndrome 1s 1xr
=s syndrome of error L cngels [k

» For t-error correcting code, syndrome 1s unique
for up to t errors & can be used for correction.

* For systematic codes G. H'= 0,
H:[' P! Ir]
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Parity Check Matrix: Ex

10 01 1]
A (1 0 1) [0 1 O0:1 1 v = (1 0 1 1)
O 0 1:1 O
I 1 1.1 0]
H=
1 1 0:{0 1
P 1 1
1 1
vH'1S a0 1 0 nl1 0l= (0 0)
A,
0 |
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* Single error correcting requiring d, ;. =3

Hamming Codes

* Syndrome: s =v.HI,
= S =0 normal, rest 2'-1 syndromes indicate error. Can
correct one error 1f syndrome 1s unique for each error.

« Thus, Hamming codes must have property: n < 2'-1

I xr= 1xn. nxr

Info Word Size | Min Check bits | Total bits | Overhead
4 3 (why not 2?) 7 75%
8 4 12 50
16 21 31
32 6 38 19

Convention:

n: total bits

k: information bits
r: check bits
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Hamming codes: Ex: Non-positioned

1 \Y
do d3 cl c3
- (1110)—(1110 000)
1 0 00 i1 1 0 ——
data check
G= |0 1 00 i1 0 1
o 0 1 0 :0 1 1 1 1 0
0 0 0 1 i1 1 1 1 0 1
— 0 1 1
1 1 0 1i10 0 e
H = |1 0 1 1:01 0 1 0 0
0 1 1 100 1 0 1 0
- - 0 0 1

(1110 000) H™= (000)

(0110 000) H'= (110) “Positioned” Hamming Code
(1117 000) HT= (111)

Error in d3 |do |dl [ecl [d2 [c2 |c3
syndrome | 111 [ 110 | 101 | 100 | 011 | 010 | 001
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ECC System

o e
—» & [
& / Info | Syndrome | Syndrome
- /" :
16 Generation/ 7L>
AN heck correction 6
/ 6 chec > Can also
Check-bit generator identify some
Memory uncorrectable
errors

Ex: Intel, AMD ECC chips. Cascadable 16-64 bits.

All 1-bit errors corrected.

Automatic error scrubbing using read-modify-write
cycle.
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Prof R.C. Bose, (-1987)
Colorado State

gCH Cyclic Codes

e Cyclic Codes: parity check codes such that cyclic shift of a code
word is also a code word.

* Polynomial: to represent bit positions

(n,k) cyclic code = generator polynomial of degree n-k
v(X)=M(x).G(x) degrees (n-1)=(k-1)(n-k)

* EX:Gx)=x4+3+x2+1 = (11101) (7,3) cyclic code
Message Corres. v(x) | codeword , i
(X*Hx)(x+Hx>+x+1 )
000 (0) 0 0000 000 —(x6+0.55-10 X Hx3x2-1)
110 (x*+x) x6+x3+x2+x | 1001 110 —(x6+x3+x2+x)

111 (x*+x+1) | x0+x++x+1 1010 0011

¢ ‘\‘{)/ {‘:_r :-]{]_’@ ’ 3/25/21 Fault Tolerant Computing ©YKM 2 4
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Systematic Cyclic Codes

e Consider x™M(x)= Q(x)G(x)+ C(x)
Quotient Q(x): degree k-1, remainder C(x):degree n-k-1
« Then x™*M(x)-C(x)=Q(x)G(x),
thus x"™kM(x)-C(x) is a code word.

= Shift message (n-k) positions to the left Convention:
n: total bits

= Fill vacated bits by remainder . N
k: information bits

* Polynomial division to get remainder T check bits

= Note computation 1s /inear

Atk areadka i
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Systematic Cyclic Codes

« Ex: GX)=x*+x*+x?+1 n-k=4, n=7

message | X*M(x) Remainder | codeword
C(x)
000 0 (0000 000) 0(0000) 000 0000
110 x%+x> (1100000) X34+1(1001) | 110 1001
111 x6+x5+x4(1110000) | x2(0100) 111 0100
e An error-free codeword divided by generator

polynomial will give remainder O.

Polynomial divisio>
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Polynomial division

« Ex: G(x)=x*+x*+x?+1 n-k=4, n=7,
M=(110), x*M(x) is x®+x> remainder is x>+1.

X +1
Xt +x 4x? 4] ‘ X6 +x3
X6 x> x4 +x2
x4 +x2
x* 4x3 %2 +1
* (Code word then is X3 +1
(110 100T)
remainder
Qolorado 30521 C10/30 Fault Tolerant Computing OYKM 27
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LFSR: Poly. Div. Circuit

o Ex: G(x)=x*+x3+x?+1 n-k=4, C(x) of degree n-k-1=3

quotient l a1 l a,=1 a=1

C3<—®‘\C2‘—®“Cl

1. Clear shift register.

2. Shift (n-k) message bits 1n.

3. K shift lefts (hence shift out k bits of quotient)
4. Daisable feedback, shift out (n-k) bit remainder.

» Linear feedback shift Register used for both encoding and
checking.

Input string
msb first

A
Q
S

inyes \ .
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LESRs

« Remainder is a signature. If good and faulty
message have same signature, there 1s an aliasing
error.

Not
* Error detection properties: Smith 1980 | impressive

« For k—o0, P{an aliasing error} is 2-®% provided all
error patterns are equally likely.

= All single errors are detectable, if poly has 2 or more non-zero
coefficients.

= All (n-k) bit burst errors are detected, if coefficient of x°is 1.

e Other LFSR implementations: parallel inputs,
exors only in the feedback paths.

n-k: number of check bits

i w2y by .
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Autonomous LFSRs (ALFSR)

 ALFSR: LFSR with input=0.

* If polynomial 1s primitive (ireawinio. 1ts state will
cycle through all (27*-1-1) combinations, except
(0,0,..0,0).

* A list of polynomials of various degrees 1s
available.

 Alternatives to ALFSR:
= GLFSR

= Antirandom
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@4,_\/ Ol_r\ o \'1‘\0 3/25/21 Fault Tolerant Computing ©YKM



Some resources

Linear Feedback Shift Registers, Golomb's Principles
Algorithmic Introduction to Coding Theory
An interesting property:

 Theorem 1 : Let H be a parity-check matrix for a linear (n,k)-code C
defined over F. Then every set of s-1 columns of H are linearly
independent if and only if C has minimum distance at least s.
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http://www-math.ucdenver.edu/~wcherowi/courses/m5410/m5410fsr.html
http://theory.lcs.mit.edu/~madhu/FT01/

