Fault Tolerant Computing CS 530

Final Review

Yashwant K. Malaiya Colorado State University

Also see

• <u>Midterm Review</u> Slides

Exponential Reliability Growth Model

- Most common and easiest to explain model. From 1970s
- Notation:
 - Total expected faults detected by time t: $\mu(t)$
 - Failure intensity: fault detection rate $\lambda(t)$
 - Undetected defects present at time t: N(t)
- By definition, $\lambda(t)$ is derivative of $\mu(t)$. Hence

$$\lambda(t) = \frac{d}{dt}\mu(t)$$
$$= -\frac{d}{dt}N(t)$$

Since faults found are no longer undetected

Exponential SRGM Derivation Pt 1

- Notation
 - T_s : average single execution time
 - k_s : expected fraction of faults found during T_s
 - T_L: time to execute each program instruction once $-\frac{dN(t)}{dt}T_{s} = k_{s}N(t)$ $-\frac{dN(t)}{dt} = \frac{K}{T_{L}}N(t) = \beta_{1}N(t)$ Notation: Here we replace K_{s} and T_{s} by more convenient K and T_{L} . where $K = k_{s}\frac{T_{L}}{T_{s}}$ is fault exposure ratio

Exponential SRGM Derivation Pt 2

• We get

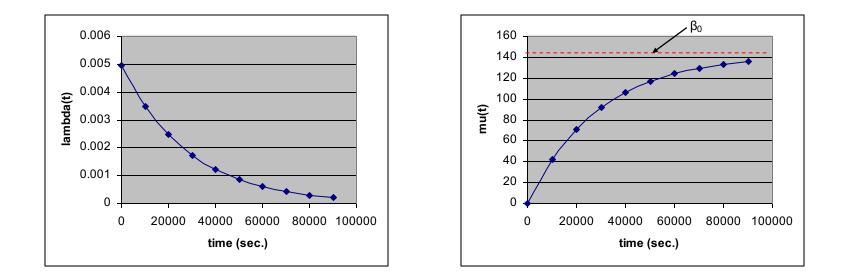
$$N(t) = N(0) e^{-\beta_1 t}$$

 $\mu(t) = \beta_o(1 - e^{-\beta_1 t}) \qquad \lambda(t) = \beta_o \beta_1 e^{-\beta_1 t}$

The 2 equations contain the same information.

- For $t \rightarrow \infty$, total $\beta_0 = N(0)$ faults would be eventually detected. A *"finite-faults-model"*.
- Assumes no new defects are generated during debugging.
- Proposed by Jelinski-Muranda '71, Shooman '71, Goel-Okumoto '79 and Musa '75-' 80. also called Basic.

Exponential SRGM



The plots show $\lambda(t)$ and $\mu(t)$ for $\beta 0=142$ and $\beta 1=3.5 \times 10^{-5}$. Note that $\mu(t)$ asymptotically approaches 142.

A Basic SRGM (cont.)

• Note that parameter β_1 is given by:

$$\beta_{I} = \frac{K}{T_{L}} = \frac{K}{(S.Q.\frac{1}{r})}$$

- S: source instructions,
- Q: number of object instructions per source instruction typically between 2.5 to 6 (see page 7-13 of <u>Software</u> rteliability Handbook, sec 7)
- r: object instruction execution rate of the computer
- K: *fault-exposure ratio*, range 1×10^{-7} to 10×10^{-7} , (t is in CPU seconds). Assumed constant here*.
- Q, r and K should be relatively easy to estimate.

*Y. K. Malaiya, A. von Mayrhauser and P. K. Srimani, "An examination of fault exposure ratio," in IEEE Transactions on Software Engineering, vol. 19, no. 11, pp. 1087-1094, Nov 1993

Example: SRGM with Test Data (cont.)

• Fitting we get

 $\beta_{\rm o} = 101.47$ and $\beta_1 = 5.22 \times 10^{-5}$

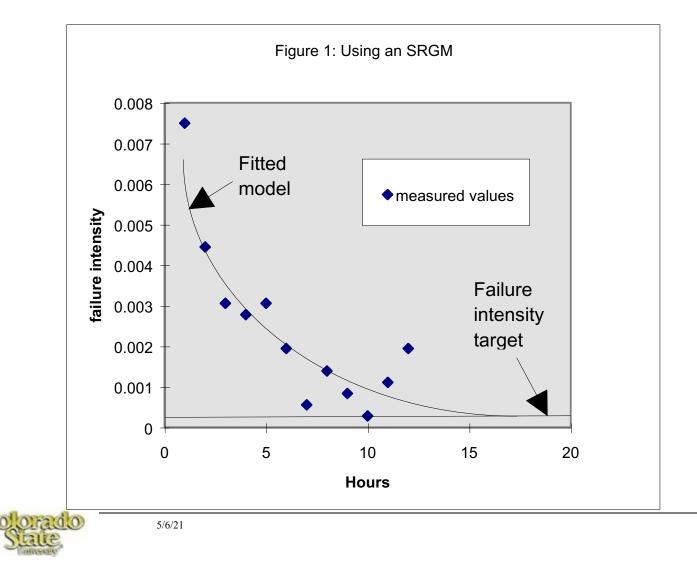
• stopping time t_f is then given by:

 $2.78 \times 10^{-4} = 101.47 \times 5.22 \times 10^{-5} e^{-5.22 \times 10^{-5} \times t_f}$

• yielding $t_f = 56, 473 \text{ sec.}, \text{ i.e. } 15.69 \text{ hours}$

Note: The exact values of the parameter values estimated depend on the numerical methods used.

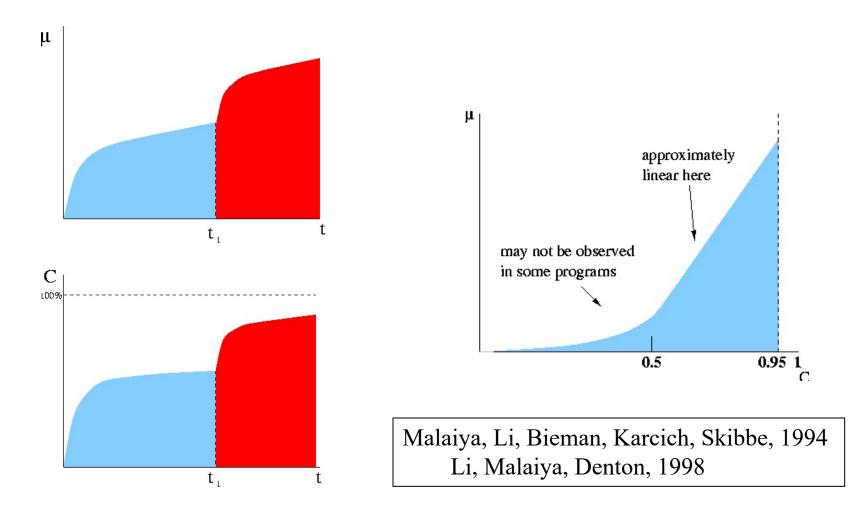
Example: SRGM with Test Data (cont.)



On-Line course Survey

- Log into Canvas
- Click Menu item Course Survey
- Take 15 minutes

Modeling : Defects, Time, & Coverage



Coverage Based Defect Estimation

- Coverage is an objective measure of testing
 - Directly related to test effectiveness
 - Independent of processor speed and testing efficiency
- Lower defect density requires higher coverage to find more faults
- Once we start finding faults, expect coverage vs. defect growth to be linear

Logarithmic-Exponential Coverage Model

• Hypothesis 1: defect coverage growth follows logarithmic model

$$C^{0}(t) = \frac{\beta_{0}^{0}}{N^{0}} \ln(1 + \beta_{1}^{0}t), \quad C^{0}(t) \le 1$$

• Hypothesis 2: test coverage growth follows logarithmic model

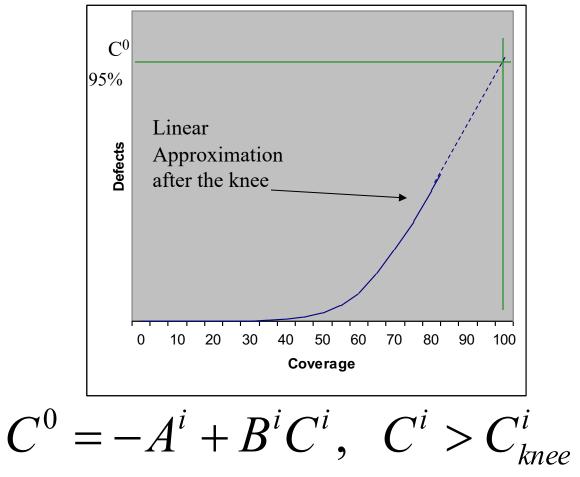
$$C^{i}(t) = \frac{\beta_{0}^{i}}{N^{i}} \ln(1 + \beta_{1}^{i}t), \quad C^{i}(t) \le 1$$

Log-Expo Coverage Model (2)

- Eliminating t and rearranging, $C^{0} = a_{0}^{i} \ln[1 + a_{1}^{i}(\exp(a_{2}^{i}C^{i}) - 1)], \quad C^{0} \leq 1$ where C^{0} : defect coverage, C^{i} : test coverage $a_{0}^{i}, a_{1}^{i}, a_{2}^{i}$: parameters; *i*: branch cov, p - use cov etc.
- For "large" Ci, we can approximate

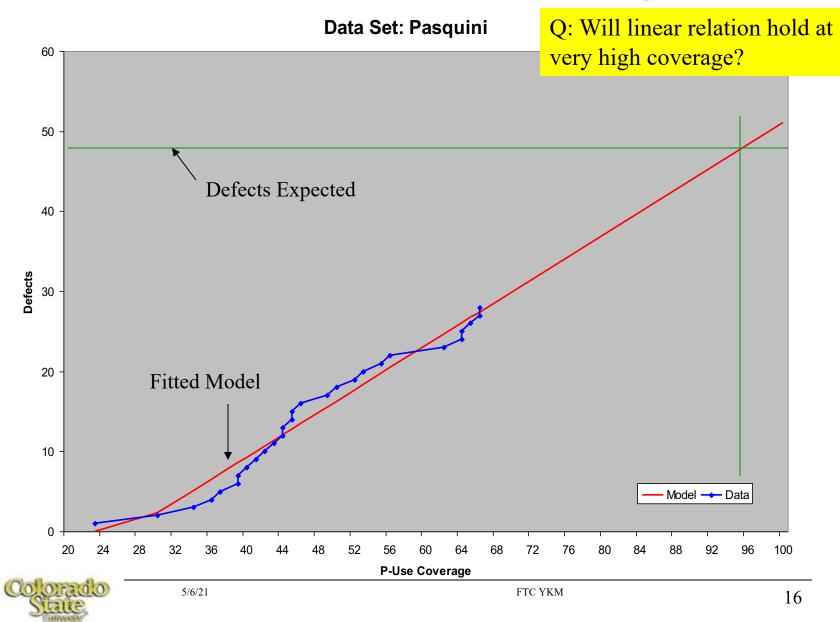
$$C^0 = -A^i + B^i C^i$$

Coverage Model, Estimated Defects



- Only applicable after the knee
- Assumptions : Stable Software

Defects vs. P-Use Coverage



Estimation of Defect Density

- Estimated defects at 95% coverage, for Pasquini data (assume 5% *dead code*)
- 28 faults found, and 33 known to exist

Measure	Coverage	Expected		
	Achieved	Defects		
Block	82%	36		
Branch	70%	44		
P-uses	67%	48		

Sequential execution

- Assume one module executed at a time.
- f_i : fraction of time module i under execution; λ_i its failure rate
- Mean system failure rate:

$$\lambda_{sys} = \sum_{i=1}^{n} f_{i} \lambda_{i}$$

Sequential Execution (cont.)

- T: mean duration of a single transaction
- module i is called e_i times during T, each time executed for duration d_i

$$d_i$$
 t T
 T
 t called 3rd time

$$f_i = \frac{e_i d_i}{T}$$

Sequential Execution (cont.)

• System reliability $R_{sys} = exp(-\lambda_{sys} T)$

$$R_{sys} = \exp(-\sum_{i=1}^{n} e_i \ d_i \ \lambda_i)$$

• Since
$$exp(-d_i\lambda_i)$$
 is R_i ,

$$\lambda_{sys} = \sum_{i=1}^{n} f_{i} \lambda_{i}$$

$$n$$

$$R_{sys} = \prod_{i=1}^{n} (R_i)^{e_i}$$

$$f_i = \frac{e_i d_i}{T}$$

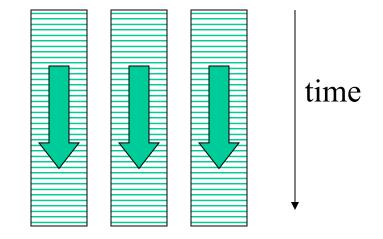
Sequential Execution Risk

• System Risk = Σ Risk due to failure type i

	Called times	Av duration	Fraction of T	Failure rate	Av cost/ failure	Fail prob/T	Risksi	
Module i	ei	di	fi = di/T	λί	Ci	=1-exp(ei.di. λi)	potential loss per trans	
а	1	3	12%	0.01	20	0.030	0.59	
b	2	4	32%	0.03	100	0.213	21.34	
С	7	2	56%	0.001	200	0.014	2.78	
Total time	T 5/6/2	25	100%		FTC YKM	Total risk	24.71	

Concurrent execution

- Concurrently executing modules: all run without failures for system to run
- j concurrently executing modules



$$\lambda_{sys} = \sum_{j=1}^m \lambda_j$$

N-version systems: Correlation

- 3-version system
- q₃: probability of all three versions failing for the same input.
- q₂: probability that any two versions will fail together.
- Probability P_{sys} of the system *failing* for a transaction

$$P_{sys} = q_3 + 3q_2$$

N-version systems: Correlation

- Example: *data collected by Knight-Leveson; computations by Hatton*
- *3-version system, probability of a version failing for a transaction 0.0004*
- in the absence of any correlated failures

$$P_{sys} = (0.0004)^3 + 3(1 - 0.0004)(0.0004)^2$$
$$= 4.8 \times 10^{-7}$$

• Uncorrelated improvement factor of 0.0004/4.8 x $10^{-7} = 833.3$

N-version systems: Correlation

- $P_{sys} = q_3 + 3 q_2$
- Uncorrelated improvement factor of $0.0004/4.8 \ge 10^{-7} = 833.3$
- Correlated: $q_3 = 2.5 \times 10^{-7}$ and $q_2 = 2.5 \times 10^{-6}$
- $P_{sys} = 2.5 \times 10^{-7} + 3 \times 2.5 \times 10^{-6} = 7.75 \times 10^{-6}$
- improvement factor: 0.0004/7.75×10⁻⁶= **51.6**
- state-of-the-art techniques can reduce defect density only by a factor of **10**!
- Thus 3-version system may be worth considering in some cases.

Reliability Allocation for Software Systems

- a block i is under execution for a fraction x_i of the time where Σx_i = 1
- > Reliability allocation problem

Minimize
$$C = \sum_{i=1}^{n} \frac{1}{\beta_i} \ln\left(\frac{\lambda_{0i}}{\lambda_i}\right)$$

subject to
$$\lambda_{ST} \ge \sum_{i=1}^{n} x_i \lambda_i$$

Solution using Lagrange multiplier

solutions for the optimal failure rates

$$\lambda_{1} = \frac{\frac{\lambda_{ST}}{x_{1}}}{\sum_{i=1}^{n} \frac{\beta_{1}}{\beta_{i}}} \quad \lambda_{2} = \frac{\beta_{1}x_{1}}{\beta_{2}x_{2}}\lambda_{1} \quad \cdots \quad \lambda_{n} = \frac{\beta_{1}x_{1}}{\beta_{n}x_{n}}\lambda_{1}$$

> optimal values of test times d_1 and d_i , $i \neq 1$

$$d_{1} = \frac{1}{\beta_{1}} \ln \left(\frac{\lambda_{10} x_{1} \sum_{i=1}^{n} \frac{\beta_{1}}{\beta_{i}}}{\lambda_{ST}} \right) \qquad d_{i} = \frac{1}{\beta_{i}} \ln \left(\frac{\lambda_{i0} \beta_{i} x_{i}}{\lambda_{1} \beta_{1} x_{1}} \right)$$

Ex: Optimal: Software with 5 blocks

 $\lambda_{\text{ST}} \leq 0.04$

Block	B ₁	B ₂	B ₃	B ₄	B ₅
Size KSLOC	1	2	3	10	20
Ini Defect density	10	10	10	15	20
β _i	4.59×10 ⁻³	2.30×10 ⁻³	1.53×10 ⁻³	4.59×10 ⁻⁴	2.30×10 ⁻⁴
λ_{i0}	0.046	0.046	0.046	0.069	0.092
x _i	0.028	0.056	0.083	0.278	0.556
Optimal λ_i	0.04	0.04	0.04	0.04	0.04
Optimal d _i	30.1	60.1	90.2	1184	3620

Optimal when all modules have the same failure rate!

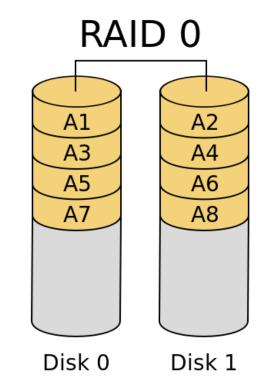
Standard RAID levels

- RAID 0: striping
- RAID 1: mirroring
- RAID 2: bit-level striping, Hamming code for error correction (not used anymore)
- RAID 3: byte-level striping, parity (rare)
- RAID 4: block-level striping, parity
- RAID 5: block-level striping, distributed parity
- RAID 6: block-level striping, distributed double parity

- Data striped across n disks
- Read/write in parallel
- No redundancy.

$$R_{sys} = \prod_{i=1}^{n} R_i$$

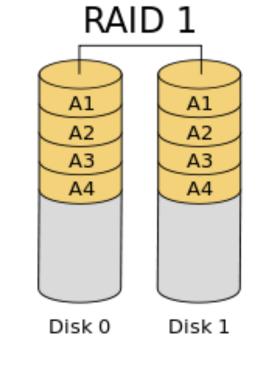
- Ex: 3 year disk reliability = 0.9 for 100% duty cycle. n = 14
- $R_{sys} = (0.9)^{14} = 0.23$



- Disk 1 mirrors Disk 0
- Read/write in parallel
- One of them may be used as backup.

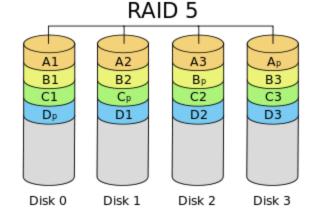
$$R_{sys} = \prod_{i=1}^{n} \left[1 - (1 - R_i)^2 \right]$$

- Ex: 3 year disk reliability = 0.9 for 100% duty cycle. n = 7 pairs
- $R_{sys} = (2x0.9 (0.9)^2)^7 = 0.93$



- Distributed parity
- If one disk fails, its data can be reconstructed using a spare

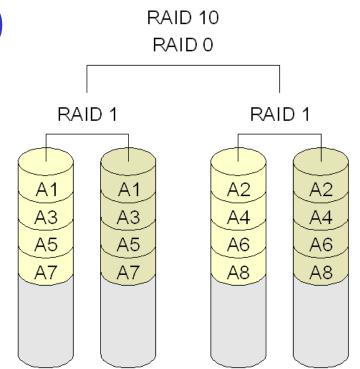
$$R_{sys} = \sum_{j=n-1}^{n} \binom{n}{j} R_{j}^{\ j} (1 - R_{i})^{n-j}$$



- Ex: 3 year disk reliability = 0.9 for 100% duty cycle. n = 13, j = 12, 13
- $R_{sys} = 0.62$

• Stripe of mirrors: each disk in RAID0 is duplicated.

$$R_{sys} = \prod_{i=1}^{ns} [1 - (1 - R_i)^2]$$



- Ex: 3 year disk reliability = 0.9 for 100% duty cycle. ns = 6 pairs, RAID 10: redundancy
- $R_{sys} = 0.94$

RAID 10: redundancy at lower level

RAID 10: Example

• Consider 10 disks where 5 disks are of type A each having a reliability of 0.5 for 100% duty cycle, and the other 5 disks are of type B each having a reliability of 0.75 for 100% duty cycle. What is the system reliability if the disks are arranged in a RAID 10 structure where each disk of type A is paired with a disk of type B holding the same data?

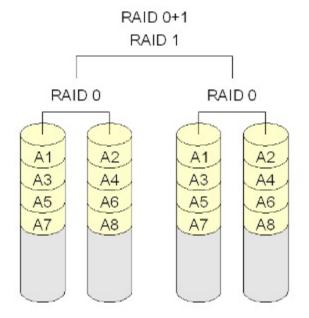
•
$$R_{sys} = \prod_{i=1}^{5} [1 - (1 - R_A)(1 - R_B)]$$

• $R_{sys} = [1-(1-0.5)*(1-0.75)]^5 = 0.5129$

Pairing two types of disks makes a good question to test understanding. In practice

• Mirror of stripes: Complete RAID0 is duplicated.

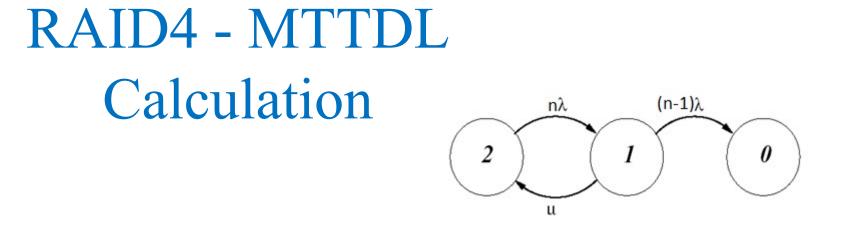
$$R_{sys} = [1 - (1 - \prod_{i=1}^{ns} R_i)^2]$$



• Ex: 3 year disk reliability = 0.9 for 100% duty cycle. ns = 6 for each of the two sets,

RAID 01: redundancy at higher level

 $R_{svs} = 0.78$



 RAID 4/5: data is lost if the second disk fails before the first failed (any one of n) could be rebuilt.

$$MTTDL = \frac{(2n-1)\lambda + \mu}{n(n-1)\lambda^2} \approx \frac{\mu}{n(n-1)\lambda^2}$$

• Detailed MTTDL calculators are available on the web.

Terminology

- Check-pointing: saving part of the process state
 - Registers affected
 - Context
 - Part of the state (registers, memory) affected by next process segment
 - Entire data base etc.
- Rollback: reestablishing a state of the process
- Audit Trail: chronological record of all transactions
- Retry: reexecution after rollback (inc. audittrail reprocessing)

Analysis of Overhead

- Assumptions :
 - \triangleright Fault arrival rate : λ , interchkpt time : T
 - \triangleright Additional retry time \propto duration from last chkpt to error
 - ▷ No inputs/errors during chkpt/rollback
- Overhead per T :
 - $\triangleright O(T) = F + V(T)$

where F: fixed time to save/load chkpt info

V(T): Average retry time

▷ Average retry time:

 $V(T) = P\{\text{error during } T\}.avg \text{ error overhead}$

$$=\lambda T(F+k\frac{T}{2})$$

Why T/2?

where k is utilization factor. Note overhead

includes time lost due to error and time to rollback.

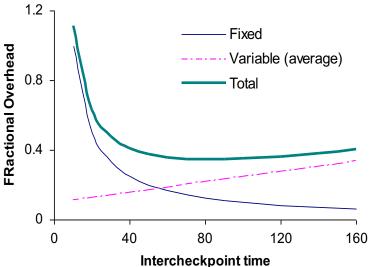
• Hence fractional overhead $\rho(T)$:

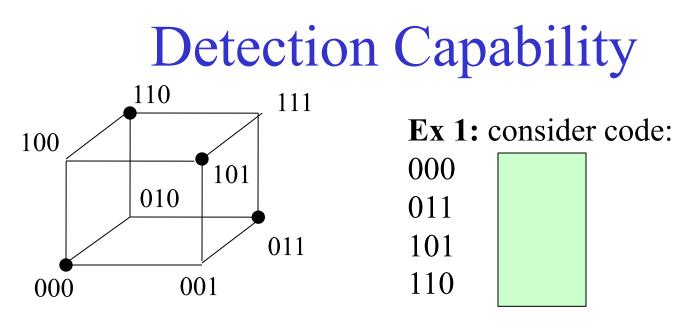
$$\rho(T) = \frac{O(T)}{T} = \frac{F}{T} + \lambda F + \frac{\lambda k}{2}T$$

Minimum occurs at

$$\frac{d\rho}{dT} = -\frac{F}{T^2} + \frac{\lambda k}{2} = 0$$
$$\therefore T_{opt} = \sqrt{\frac{2F}{\lambda k}}$$

transaction arrival rate Note: k = transaction processing rate

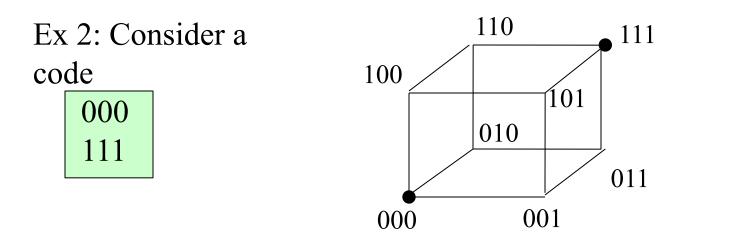




- All single bit errors result in non-code words. Thus all single-bit errors are detectable.
- Error detection capability: min Hamming dist d_{min}, p: number of errors that can be detected

$$p+1 \le d_{\min}$$
 or $p_{\max} = d_{\min} - 1$

Errors Correction Capability



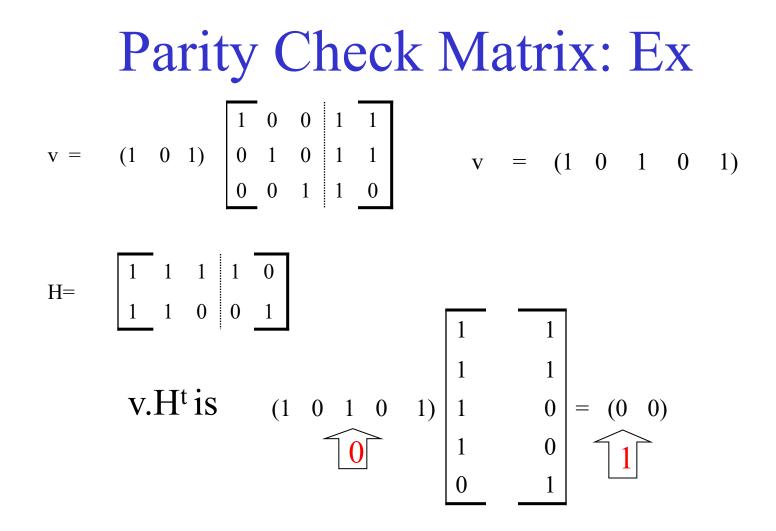
- Assume single-bit errors are more likely than 2-bit errors.
- In Ex 2 all single bit errors can be corrected. All 2 bit errors can be detected.

 (α)

• Error correction capability: t: number of errors that can be corrected:

$$2t+1 \le d_{\min} \quad \text{or} \quad t_{\max} = \lfloor (d_{\min}-1)/2 \rfloor$$

Computing



5/6/21

Fault Tolerant Systematic Cyclic Codes

• Ex: $G(x)=x^4+x^3+x^2+1$ n-k=4, n=7

message	$x^4M(x)$	C(x)	codeword
000	0(00 000)	0(0000)	000 0000
110	x ⁶ +x ⁵ (1100000)	X ³ +1(1001)	110 1001
111	x ⁶ +x ⁵ +x ⁴ (1110000)	x ² (0100)	111 0100

• An error-free codeword divided by generator polynomial will give remainder 0.

c10/30

Risk as a composite measure

Formal definition:

Risk due to an adverse event e_i Risk_i = Likelihood_i x Impact_i Sometimes likelihood is split in two factors Likelihood_i = P{hole_i present}. P{exploitation|hole; present} A specific time-frame, perhaps a year, is presumed for the likelihood.

In classical risk literature, the internal component of Likelihood is termed "Vulnerability" and external "Threat". Both are probabilities. There the term "vulnerability" does not mean a security bug, as in computer security.

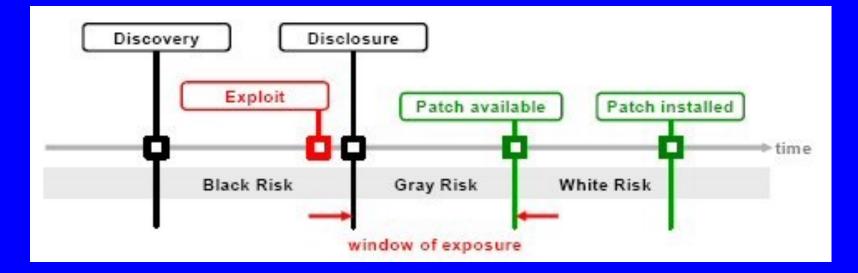
Likelihood & Impact scales

Quantitative or descriptive levels

- Number of levels may depend on resolution achievable
- Scale: Logarithmic, Linear or combined
- Risk = Likelihood x Impact
 - Log(Risk) = Log(Likelihood) + Log(Impact)
- If "Score" is proportional to Log value
 - Risk score = Likelihood score + Impact score
 - Adding scores valid if scores represent logarithmic values.

Vulnerability Lifecycle

Vulnerabilities: "defect which enables an attacker to bypass security measures" [Schultz et al]

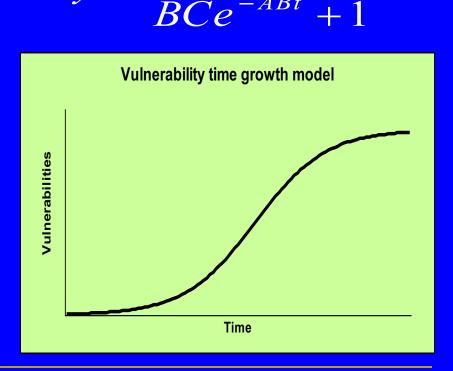


Exploit code ("exploit") : usually available after disclosure

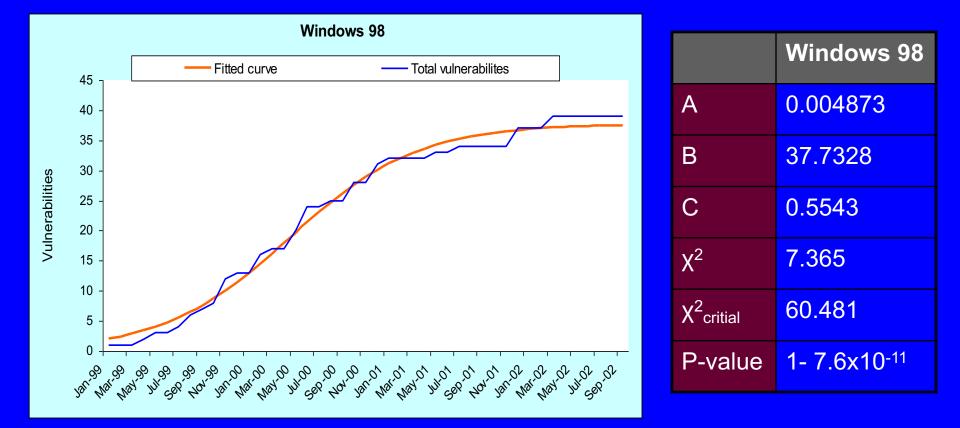
Time-vulnerability Discovery model

- 3 phase model S-shaped model.
- Phase 1:
 - Installed base –low.
- Phase 2:
 - Installed base—higher and growing/stable.
- Phase 3:
 - Installed base-dropping.

$$\frac{dy}{dt} = Ay(B - y)$$
$$y = \frac{B}{dt}$$



Time-based model: Windows 98

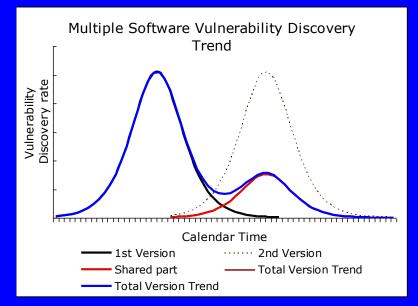


Vulnerability density and defect density

- Vulnerability densities: 95/98: 0.003-0.004 NT/2000/XP: 0.01-0.02
- □ **V_{KD}/D_{KD}**: 0.68-1.62% about 1%

System	MSLOC	Known Defects (1000s)	D_{KD} (/Kloc)	Known Vulner - abilies	V _{KD} (/Kloc)	Ratio V _{KD} /D _{KD}
Win 95	15	5	0.33	46	0.0031	0.92%
NT 4.0	16	10	0.625	162	0.0101	1.62%
Win 98	18	10	0.556	84	0.0047	0.84%
Win2000	35	63	1.8	508	0.0145	0.81%
Win XP	40	106.5*	2.66*	728	0.0182	0.68%*

Multi-version Vulnerability Discovery Model



 $\Omega(t) = \frac{1}{BCe^{-ABt} + 1}$

B'

 $+ \alpha \frac{1}{B'C'e^{-A'B'(t-\varepsilon)}} + 1$

	Previous Version	Next Version	Shared Code Ratio α
Apache	1.3.24 (3-21- 2002)	2.0.35 (4-6- 2002)	20.16%
Mysql	4.1.1 (12-1- 2003)	5.0.0 (12-22- 2003)	83.52%

Seasonal Index

Seasonal Index Values				
	WinNT	IIS	IE	
Jan	1.95	1.36	0.41	
Feb	0.93	0.91	0.86	
Mar	0.56	0.81	0.59	
Apr	0.60	1.00	0.78	
May	0.84	1.09	1.11	
Jun	1.12	1.55	1.22	
Jul	0.84	1.00	1.43	
Aug	0.79	0.64	1.14	
Sep	0.51	0.55	0.70	
Oct	0.65	0.55	0.54	
Nov	0.84	0.64	0.70	
Dec	2.37	2.55	2.51	
χ^2_c	19.68	19.68	19.68	
χ_s^2	78.37	46	130.43	
p-value	3.04e-12	3.23 e -6	1.42e-6	

Seasonal index: measures how much the average for a particular period tends to be above (or below) the expected value

H₀: no seasonality is present. We will evaluate it using the monthly seasonal index values given by [4]:

 $s_i = \frac{d_i}{d}$

where, s_i is the seasonal index for i^{th} month, d_i is the mean value of i^{th} month, d is a grand average

[4] Hossein Arsham. Time-Critical Decision Making for Business Administration. Available: http://home.ubalt. edu/ntsbarsh/Business-stat/stat-data/Forecast.htm#rseasonind

CVSS Base metric: Observation

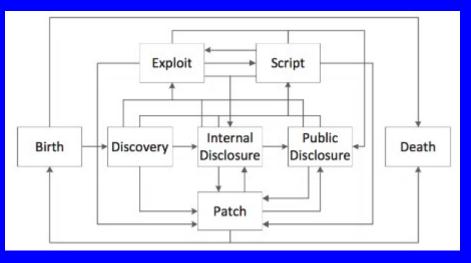
- Exploitability sub-score measure of Likelihood of exploitation of the vulnerability.
- Impact sub-score a measure of Impact.
- CVSS Base Score is a form of a risk measure. They could have computed CVSS Base Score by simply multiplying the Exploitability and the Impact sub-scores. It would result in a similar distribution of score with somewhat better resolution.
- CVSS Base Score for prioritizing vulnerabilities. Base score 7.0-10.0 critical, 4.0-6.9 major, 0-3.9 minor.
- The CVSS Base Score formula was determined by a committee and not formally derived or explained.

Likelihood of Individual Vulnerabilities Discovery

Ease of discovery

Human factor (skills, time, effort, etc.), Discovery technique, Time

Time:



Apache HTTP server
CVE-<u>2012</u>-0031, (01/18/2012)
V. 1.3.0→<u>1998</u>-06-06

Time to Discovery = Discovery Time Date – First Effected

Types of Vulnerability Markets

