
Fault Tolerant Computing
CS 530

Final Review

5/6/21 1

Yashwant K. Malaiya
Colorado State University

Infamous 2011 pool party near CSU

5/6/21 2

Also see

• Midterm Review Slides

https://www.cs.colostate.edu/~cs530dl/s21/MidtermReview.pdf

5/6/21 3

Exponential Reliability Growth Model
• Most common and easiest to explain model. From 1970s
• Notation:

§ Total expected faults detected by time t: µ(t)
§ Failure intensity: fault detection rate l(t)
§ Undetected defects present at time t: N(t)

• By definition, l(t) is derivative of µ(t). Hence

)(

)()(

tN
dt
d

t
dt
dt

-=

= µl

Since faults found are no
longer undetected

5/6/21 4

Exponential SRGM Derivation Pt 1
§ Notation

• Ts: average single execution time
• ks: expected fraction of faults found during Ts

• TL: time to execute each program instruction once

ratio exposurefault is K where

)()()(

)()(

1

s

L
s

L

ss

T
Tk

tNtN
T
K

dt
tdN

tNkT
dt
tdN

=

==-

=-

b
Notation: Here we replace
Ks and Ts by more
convenient K and TL.

Key
assumption

5/6/21 5

Exponential SRGM Derivation Pt 2
• We get

• For t®¥, total bo=N(0) faults would be eventually
detected. A “finite-faults-model”.

• Assumes no new defects are generated during
debugging.

• Proposed by Jelinski-Muranda ‘71, Shooman ‘71,
Goel-Okumoto ‘79 and Musa ‘75-’80. also called
Basic.

e)N(= N(t) t- 1b0

)e - (1 = (t) t-
o

1bbµ e = (t) t-
1o

1bbbl
The 2 equations
contain the same
information.

5/6/21 6

Exponential SRGM

0

0.001

0.002

0.003

0.004

0.005

0.006

0 20000 40000 60000 80000 100000

time (sec.)

la
m

bd
a(

t)

0

20

40

60
80

100

120

140

160

0 20000 40000 60000 80000 100000

time (sec.)

m
u(

t)

β0

The plots show l(t) and µ(t) for b0=142 and b1=3.5×10-5.
Note that µ(t) asymptotically approaches 142.

5/6/21 7

A Basic SRGM (cont.)
• Note that parameter b1 is given by:

• S: source instructions,
• Q: number of object instructions per source instruction

typically between 2.5 to 6 (see page 7-13 of Software
rteliability Handbook, sec 7)

• r: object instruction execution rate of the computer
• K: fault-exposure ratio, range 1×10-7 to 10×10-7, (t is in

CPU seconds). Assumed constant here*.
• Q, r and K should be relatively easy to estimate.

)
r

Q(S

K
T
K =

L
1 1..

=b

*Y. K. Malaiya, A. von Mayrhauser and P. K. Srimani, "An examination of fault exposure ratio,“
in IEEE Transactions on Software Engineering, vol. 19, no. 11, pp. 1087-1094, Nov 1993

http://www.cs.colostate.edu/~cs530/rh/section7.pdf

5/6/21 8

Example: SRGM with Test Data (cont.)

• Fitting we get
bo = 101.47 and b1 = 5.22 × 10-5

• stopping time tf is then given by:

• yielding tf = 56, 473 sec., i.e. 15.69 hours

e10 5.22 101.47 = 10 2.78 t 10 -5.22-5-4 f
-5´´´´´

Note: The exact values of the parameter values estimated depend
on the numerical methods used.

5/6/21 9

Example: SRGM with Test Data (cont.)
Figure 1: Using an SRGM

0

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0 5 10 15 20

Hours

fa
ilu

re
 in

te
ns

ity

measured values

Fitted
model

Failure
intensity
target

5/6/21 10

On-Line course Survey

• Log into Canvas
• Click Menu item Course Survey
• Take 15 minutes

5/6/21 FTC YKM 11

Modeling : Defects, Time, & Coverage

Malaiya, Li, Bieman, Karcich, Skibbe, 1994
Li, Malaiya, Denton, 1998

5/6/21 FTC YKM 12

Coverage Based Defect Estimation

• Coverage is an objective measure of testing
§ Directly related to test effectiveness
§ Independent of processor speed and testing

efficiency
• Lower defect density requires higher

coverage to find more faults
• Once we start finding faults, expect

coverage vs. defect growth to be linear

5/6/21 FTC YKM 13

Logarithmic-Exponential Coverage Model

• Hypothesis 1: defect coverage growth follows
logarithmic model

• Hypothesis 2: test coverage growth follows
logarithmic model

1)(),1ln()(00
10

0
00 £+= tCt
N

tC bb

1)(),1ln()(1
0 £+= tCt
N

tC ii
i

i
i bb

5/6/21 FTC YKM 14

Log-Expo Coverage Model (2)

• Eliminating t and rearranging,

• For “large” Ci, we can approximate
etc. cov use-p cov,branch : ;parameters:,,

coveragetest : coverage,defect : where
1)],1)(exp(1ln[

210

0

0
210

0

iaaa
CC

CCaaaC

iii

i

iiii £-+=

iii CBAC +-=0

5/6/21 FTC YKM 15

0 10 20 30 40 50 60 70 80 90 100
Coverage

De
fe
ct
s

i
knee

iiii CCCBAC >+-= ,0

Linear
Approximation
after the knee

Coverage Model, Estimated Defects

• Only applicable after the knee
• Assumptions : Stable Software

C0

95%

5/6/21 FTC YKM 16

Data Set: Pasquini

0

10

20

30

40

50

60

20 24 28 32 36 40 44 48 52 56 60 64 68 72 76 80 84 88 92 96 100

P-Use Coverage

D
ef

ec
ts

Model Data

Defects vs. P-Use Coverage

Defects Expected

Fitted Model

Q: Will linear relation hold at
very high coverage?

5/6/21 FTC YKM 17

Estimation of Defect Density

Measure Coverage
Achieved

Expected
Defects

Block 82% 36
Branch 70% 44
P-uses 67% 48

• Estimated defects at 95% coverage, for
Pasquini data (assume 5% dead code)

• 28 faults found, and 33 known to exist

5/6/21 FTC YKM 18

Sequential execution

• Assume one module executed at a time.
• fi: fraction of time module i under

execution; li its failure rate
• Mean system failure rate:

ll ii

n

1=i
sys f = å

5/6/21 FTC YKM 19

Sequential Execution (cont.)

• T: mean duration of a
single transaction

• module i is called ei times
during T, each time
executed for duration di

T
de = f ii

i

di

T

i called 3rd time

5/6/21 FTC YKM 20

Sequential Execution (cont.)

• System reliability Rsys = exp(-lsys T)

• Since exp(-dili) is Ri,

) iii

n

1=i
sys de(- = R låexp

)R(
1=i

n
 = R e

isys
iÕ

ll ii

n

1=i
sys f = å

T
de = f ii

i

5/6/21 FTC YKM 21

Sequential Execution Risk
• System Risk = Σ Risk due to failure type i

Called
times

Av
duration

Fraction
of T

Failure
rate

Av cost/
failure

Fail
prob/T Risksi

Module i ei di fi = di/T λi Ci =1-exp(ei.di. λi)

potential
loss per

trans

a 1 3 12% 0.01 20 0.030 0.59

b 2 4 32% 0.03 100 0.213 21.34

c 7 2 56% 0.001 200 0.014 2.78

Total time T 25 100%

Total
risk 24.71

5/6/21 FTC YKM 22

Concurrent execution

• Concurrently executing
modules: all run without
failures for system to run

• j concurrently executing
modules

ll j

m

1=j
sys = å

time

5/6/21 FTC YKM 23

N-version systems: Correlation

• 3-version system
• q3: probability of all three versions failing for the

same input.
• q2: probability that any two versions will fail

together.
• Probability Psys of the system failing for a

transaction
q3 + q = P 23sys

5/6/21 FTC YKM 24

N-version systems: Correlation
• Example: data collected by Knight-Leveson;

computations by Hatton
• 3-version system, probability of a version failing

for a transaction 0.0004
• in the absence of any correlated failures

• Uncorrelated improvement factor of 0.0004/4.8 x
10-7 = 833.3

10 x 4.8 =
)00040.0004)(0.-3(1 +)(0.0004 = P

7-

2
sys

3

5/6/21 FTC YKM 25

N-version systems: Correlation

• Uncorrelated improvement factor of
0.0004/4.8 x 10-7 = 833.3

• Correlated: q3 = 2.5´10-7 and q2 = 2.5´10-6

• Psys = 2.5´10-7 + 3´2.5´10-6 = 7.75´10-6

• improvement factor: 0.0004/7.75´10-6= 51.6
• state-of-the-art techniques can reduce defect

density only by a factor of 10!
• Thus 3-version system may be worth

considering in some cases.

q3 + q = P 23sys

Reliability Allocation for
Software Systems

Ø a block i is under execution for a fraction xi of the
time where Sxi = 1

Ø Reliability allocation problem

÷÷
ø

ö
çç
è

æ
=å

= i

i
n

i i

C
l
l

b
0

1
ln1 Minimize

Solution using Lagrange multiplier

Ø solutions for the optimal failure rates

Ø optimal values of test times d1 and di, i≠1

1
11

1
22

11
2

1

1

1
1 l

b
bll

b
bl

b
b

l

l
nn

nn

i i

ST

x
x

x
xx

===

å
=

!

÷
÷
÷
÷

ø

ö

ç
ç
ç
ç

è

æ

=
å
=

ST

n

i i

x
d

l
b
bl

b
1

1
110

1
1 ln1 ÷÷

ø

ö
çç
è

æ
=

111

0ln1
x
xd iii

i
i bl

bl
b

Ex: Optimal: Software with 5 blocks

Ø Optimal when all modules have the same failure rate!

Block B1 B2 B3 B4 B5

Size KSLOC 1 2 3 10 20

Ini Defect
density

10 10 10 15 20

βi 4.59´10-3 2.30´10-3 1.53´10-3 4.59´10-4 2.30´10-4

λi0 0.046 0.046 0.046 0.069 0.092

xi 0.028 0.056 0.083 0.278 0.556

Optimal λi 0.04 0.04 0.04 0.04 0.04

Optimal di 30.1 60.1 90.2 1184 3620

λST ≤ 0.04

Standard RAID levels
• RAID 0: striping
• RAID 1: mirroring
• RAID 2: bit-level striping, Hamming code for

error correction (not used anymore)
• RAID 3: byte-level striping, parity (rare)
• RAID 4: block-level striping, parity
• RAID 5: block-level striping, distributed parity
• RAID 6: block-level striping, distributed double

parity
5/6/21 FTC YKM 29

RAID 0

5/6/21 FTC YKM 30

• Data striped across n disks
• Read/write in parallel
• No redundancy.

• Ex: 3 year disk reliability = 0.9 for
100% duty cycle. n = 14

• Rsys = (0.9)14 = 0.23

Õ
=

=
n

i
isys RR

1

RAID 1

5/6/21 FTC YKM 31

• Disk 1 mirrors Disk 0
• Read/write in parallel
• One of them may be used as

backup.

• Ex: 3 year disk reliability = 0.9 for
100% duty cycle. n = 7 pairs

• Rsys = (2x0.9-(0.9)2)7 = 0.93

Õ
=

--=
n

i
isys RR

1

2])1(1[

Failed disk identified using internal CRC

RAID 5

5/6/21 FTC YKM 32

• Distributed parity
• If one disk fails, its data can

be reconstructed using a spare

• Ex: 3 year disk reliability = 0.9 for
100% duty cycle. n = 13, j = 12, 13

• Rsys = 0.62

å -=
--÷÷

ø

ö
çç
è

æ
=

n

nj
jn

i
j
jsys RR

j
n

R
1

)1(

RAID 10

5/6/21 FTC YKM 33

• Stripe of mirrors: each disk in
RAID0 is duplicated.

• Ex: 3 year disk reliability = 0.9 for 100%
duty cycle. ns = 6 pairs,

• Rsys = 0.94

Õ
=

--=
ns

i
isys RR

1

2])1(1[

RAID 10: redundancy at lower level

RAID 10: Example

5/6/21 FTC YKM 34

• Consider 10 disks where 5 disks are of type A each having a
reliability of 0.5 for 100% duty cycle, and the other 5 disks are
of type B each having a reliability of 0.75 for 100% duty cycle.
What is the system reliability if the disks are arranged in a
RAID 10 structure where each disk of type A is paired with a
disk of type B holding the same data?

• 𝑅!"! = ∏#$%
& 1 − 1 − 𝑅' 1 − 𝑅(

• Rsys = [1-(1-0.5)*(1-0.75)]^5 = 0.5129

Pairing two types of disks makes a good question to
test understanding. In practice ….

RAID 01

5/6/21 FTC YKM 35

• Mirror of stripes: Complete
RAID0 is duplicated.

• Ex: 3 year disk reliability = 0.9 for 100%
duty cycle. ns = 6 for each of the two sets,

• Rsys = 0.78

])1(1[2

1
Õ
=

--=
ns

i
isys RR

RAID 01: redundancy at higher level

RAID4 - MTTDL
Calculation

22)1()1(
)12(

l
µ

l
µl

-
»

-
+-=

nnnn
nMTTDL

¨ RAID 4/5: data is lost if the second disk fails before the first failed
(any one of n) could be rebuilt.

¨ Detailed MTTDL calculators are available on the web.

5/6/21 FTC YKM 37

Terminology
• Check-pointing: saving part of the process state

§ Registers affected
§ Context
§ Part of the state (registers, memory) affected by next

process segment
§ Entire data base etc.

• Rollback: reestablishing a state of the process
• Audit Trail: chronological record of all

transactions
• Retry: reexecution after rollback (inc. audit-

trail reprocessing)

5/6/21 FTC YKM 38

Analysis of
Overhead

rollback. to timeanderror toduelost timeincludes
overhead Note factor. nutilizatio isk where

)
2
TkF(T

overheaderror T}.avg duringP{error V(T)
: retry time Average

retry time Average:V(T)
infochkpt save/load to timefixed : Fwhere

V(T)FO(T)
:Tper Overhead

backchkpt/roll during orsinputs/err No
error chkpt tolast from duration retry time Additional

T: timeinterchkpt,λ :rate arrivalFault
:sAssumption

+=

=

+=
•

µ

•

l

!

!

!

!

!

Justification?

Why
T/2?

5/6/21 FTC YKM 39

Analysis of Overhead (2)

rate processing ntransactio
rate arrival ntransactiok :Note

kλ
2FT

0
2
kλ

T
F

dT
dρ

at occurs Minimum

T
2
kF

T
F

T
O(T)ρ(T)

:ρ(T) overhead fractional Hence

opt

2

=

=\

=+-=

++==

•
ll

0

0.4

0.8

1.2

0 40 80 120 160
Intercheckpoint time

FR
ac

tio
na

l O
ve

rh
ea

d

Fixed
Variable (average)
Total

Ex: l =0.01, k=0.3, F=10

yields Topt=81.6 (above)

5/6/21 40 Fault
Tolerant

Computing

Detection Capability

• All single bit errors result in non-code words. Thus all
single-bit errors are detectable.

• Error detection capability: min Hamming dist dmin, p:
number of errors that can be detected

p+1£ dmin or pmax = dmin - 1

000 001

100

010

011

111

101

110
Ex 1: consider code:
000
011
101
110

5/6/21 41 Fault
Tolerant

Computing

Errors Correction Capability

• Assume single-bit errors are more likely than 2-bit errors.
• In Ex 2 all single bit errors can be corrected. All 2 bit

errors can be detected.
• Error correction capability: t: number of errors that can

be corrected:
2t+1 £ dmin or tmax=ë(dmin-1)/2û

Ex 2: Consider a
code

000
111

000 001

100

010

011

111

101

110

Proof?

5/6/21 42 Fault
Tolerant

Computing

Parity Check Matrix: Ex
1 0 0 1 1

v = (1 0 1) 0 1 0 1 1
0 0 1 1 0

v = (1 0 1 0 1)

H=
1 1 1 1 0

1 1 0 0 1
1 1

1 1
(1 0 1 0 1) 1 0 = (0 0)

1 0
0 1

v.Ht is
0 1

c11/6

5/6/21 43 Fault
Tolerant

Computing

Systematic Cyclic Codes
• Ex: G(x)=x4+x3+x2+1 n-k=4, n=7

message x4M(x) C(x) codeword
000 0(00 000) 0(0000) 000 0000
110 x6+x5 (1100000) X3+1(1001) 110 1001
111 x6+x5+x4(1110000) x2(0100) 111 0100

• An error-free codeword divided by generator
polynomial will give remainder 0.

c10/30

Formal definition:
n Risk due to an adverse event ei

Riski = Likelihoodi x Impacti
n Sometimes likelihood is split in two factors

Likelihoodi = P{holei present}.
P{exploitation|holei present}

n A specific time-frame, perhaps a year, is
presumed for the likelihood.

Risk as a composite measure

May 6, 2021 44

In classical risk literature, the internal component of Likelihood is termed “Vulnerability” and external “Threat”.
Both are probabilities. There the term “vulnerability” does not mean a security bug, as in computer security.

Likelihood & Impact scales

n Quantitative or descriptive levels
q Number of levels may depend on resolution achievable

n Scale: Logarithmic, Linear or combined
n Risk = Likelihood x Impact

q Log(Risk) = Log(Likelihood) + Log(Impact)
n If “Score” is proportional to Log value

q Risk score = Likelihood score + Impact score

q Adding scores valid if scores represent logarithmic values.

Vulnerability Lifecycle

46

Vulnerabilities: “defect which enables an attacker to bypass
security measures” [Schultz et al]

Exploit code (“exploit”) : usually available after disclosure

Time–vulnerability Discovery model

Vulnerability time growth model

Time

 V
u

ln
er

ab
il

it
ie

s

1+
= -ABtBCe

By

3 phase model S-shaped
model.
• Phase 1:

•Installed base –low.
• Phase 2:

•Installed base–higher and
growing/stable.

• Phase 3:
•Installed base–dropping.

)(yBAy
dt
dy

-=

Windows 98

A 0.004873

B 37.7328

C 0.5543

χ2 7.365

χ2
critial 60.481

P-value 1- 7.6x10-11

Time–based model: Windows 98

Windows 98

0

5

10

15

20

25

30

35

40

45

Ja
n-

99

Mar-
99

May
-99

Ju
l-9

9

Se
p -99

Nov
-99

Ja
n-

00

Mar-
00

May
-00

Ju
l-0

0

Se
p -00

Nov
-00

Ja
n-

01

Mar-
01

May
-01

Ju
l-0

1

Se
p -01

Nov
-01

Ja
n-

02

Mar-
02

May
-02

Ju
l-0

2

Se
p -02

V
ul

ne
ra

bi
lit

ie
s

Fitted curve Total vulnerabilites

Vulnerability density and defect density

q Vulnerability densities: 95/98: 0.003-0.004 NT/2000/XP:
0.01-0.02

q VKD/DKD: 0.68-1.62% about 1%

System MSLOC
Known
Defects
(1000s)

DKD
(/Kloc)

Known
Vulner -
abilies

VKD
(/Kloc)

Ratio
VKD
/DKD

Win 95 15 5 0.33 46 0.0031 0.92%
NT 4.0 16 10 0.625 162 0.0101 1.62%
Win 98 18 10 0.556 84 0.0047 0.84%

Win2000 35 63 1.8 508 0.0145 0.81%

Win XP 40 106.5* 2.66* 728 0.0182 0.68%*

50

Multi-version Vulnerability Discovery
Model

Multiple Software Vulnerability Discovery
Trend

Calendar Time

V
ul

ne
ra

bi
lit

y
D

is
co

ve
ry

 r
at

e

1st Version 2nd Version
Shared part Total Version Trend
Total Version Trend

Previous
Version

Next
Version

Shared
Code

Ratio α

Apache
1.3.24
(3-21-
2002)

2.0.35
(4-6-
2002)

20.16%

Mysql
4.1.1

(12-1-
2003)

5.0.0
(12-22-
2003)

83.52%

Seasonal Index
Seasonal Index Values
WinNT IIS IE

Jan 1.95 1.36 0.41
Feb 0.93 0.91 0.86
Mar 0.56 0.81 0.59
Apr 0.60 1.00 0.78
May 0.84 1.09 1.11
Jun 1.12 1.55 1.22
Jul 0.84 1.00 1.43
Aug 0.79 0.64 1.14
Sep 0.51 0.55 0.70
Oct 0.65 0.55 0.54
Nov 0.84 0.64 0.70
Dec 2.37 2.55 2.51

19.68 19.68 19.68
78.37 46 130.43

p-value 3.04e-12 3.23e-6 1.42e-6

51

• Seasonal index: measures how much
the average for a particular period
tends to be above (or below) the
expected value

• H0: no seasonality is present. We
will evaluate it using the monthly
seasonal index values given by [4]:

where, si is the seasonal index for ith
month, di is the mean value of ith
month, d is a grand average

[4] Hossein Arsham. Time-Critical Decision Making for Business Administration.
Available: http://home.ubalt. edu/ntsbarsh/Business-stat/stat-data/Forecast.htm#rseasonindx

CVSS Base metric: Observation

n Exploitability sub-score - measure of Likelihood of exploitation of the
vulnerability.

n Impact sub-score - a measure of Impact.
n CVSS Base Score is a form of a risk measure. They could have

computed CVSS Base Score by simply multiplying the Exploitability
and the Impact sub-scores. It would result in a similar distribution of
score with somewhat better resolution.

n CVSS Base Score for prioritizing vulnerabilities. Base score 7.0-10.0
critical, 4.0-6.9 major, 0-3.9 minor.

n The CVSS Base Score formula was determined by a committee and
not formally derived or explained.

May 6, 2021 52

• Ease of discovery
n Human factor (skills, time, effort, etc.), Discovery technique, Time

• Time:

53

Time to Discovery = Discovery Time Date – First Effected
version Release Date

§ Apache HTTP server
§ CVE-2012-0031,
(01/18/2012)
§ V. 1.3.0à1998-06-06

Likelihood of Individual Vulnerabilities Discovery

Types of Vulnerability Markets

54

