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Also see 

• Midterm Review Slides

https://www.cs.colostate.edu/~cs530dl/s21/MidtermReview.pdf
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Exponential Reliability Growth Model
• Most common and easiest to explain model. From 1970s
• Notation:

§ Total expected faults detected by time t: µ(t)
§ Failure intensity: fault detection rate l(t)
§ Undetected defects present at time t: N(t)

• By definition, l(t) is derivative of µ(t).  Hence 
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Since faults found are no 
longer undetected
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Exponential SRGM Derivation Pt 1
§ Notation

• Ts: average single execution time
• ks: expected fraction of faults found during Ts

• TL: time to execute each program instruction once

ratio exposurefault  is K where
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Notation: Here we replace 
Ks and Ts by more 
convenient K and TL.

Key 
assumption
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Exponential SRGM Derivation Pt 2
• We get

• For t®¥, total bo=N(0) faults would be eventually
detected. A “finite-faults-model”.

• Assumes no new defects are generated during
debugging.

• Proposed by Jelinski-Muranda ‘71, Shooman ‘71,
Goel-Okumoto ‘79 and Musa ‘75-’80. also called
Basic.

e)N( = N(t) t- 1b0

)e - (1 = (t) t-
o

1bbµ e  = (t) t-
1o

1bbbl
The 2 equations 
contain the same 
information.
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Exponential SRGM
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The plots show l(t) and µ(t) for b0=142 and b1=3.5×10-5.
Note that µ(t) asymptotically approaches 142.
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A Basic SRGM (cont.)
• Note that parameter b1 is given by:

• S: source instructions,
• Q: number of object instructions per source instruction

typically between 2.5 to 6 (see page 7-13 of Software
rteliability Handbook, sec 7)

• r: object instruction execution rate of the computer
• K: fault-exposure ratio, range 1×10-7 to 10×10-7, (t is in

CPU seconds). Assumed constant here*.
• Q, r and K should be relatively easy to estimate.

)
r

Q(S

K
T
K = 

L
1 1..

=b

*Y. K. Malaiya, A. von Mayrhauser and P. K. Srimani, "An examination of fault exposure ratio,“
in IEEE Transactions on Software Engineering, vol. 19, no. 11, pp. 1087-1094, Nov 1993

http://www.cs.colostate.edu/~cs530/rh/section7.pdf
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Example: SRGM with Test Data (cont.)

• Fitting we get 
bo = 101.47  and  b1 = 5.22 × 10-5

• stopping time tf is then given by:

• yielding tf = 56, 473 sec., i.e. 15.69 hours

e10  5.22  101.47 = 10  2.78 t  10  -5.22-5-4 f
-5´´´´´

Note: The exact values of the parameter values estimated depend 
on the numerical  methods used.
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Example: SRGM with Test Data (cont.)
Figure 1: Using an SRGM
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On-Line course Survey

• Log into Canvas
• Click Menu item Course Survey
• Take 15 minutes 
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Modeling : Defects, Time, & Coverage

Malaiya, Li, Bieman, Karcich, Skibbe, 1994 
Li, Malaiya, Denton, 1998



5/6/21 FTC YKM 12

Coverage Based Defect Estimation

• Coverage is an objective measure of testing
§ Directly related to test effectiveness
§ Independent of processor speed and testing 

efficiency
• Lower defect density requires higher 

coverage to find more faults
• Once we start finding faults, expect 

coverage vs. defect growth to be linear
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Logarithmic-Exponential Coverage Model

• Hypothesis 1: defect coverage growth follows 
logarithmic model

• Hypothesis 2: test coverage growth follows 
logarithmic model
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Log-Expo Coverage Model (2)

• Eliminating t and rearranging, 

• For “large” Ci, we can approximate
etc. cov use-p cov,branch : ;parameters:,,

coveragetest : coverage,defect : where
1)],1)(exp(1ln[

210

0

0
210

0

iaaa
CC

CCaaaC

iii

i

iiii £-+=

iii CBAC +-=0



5/6/21 FTC YKM 15
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Coverage Model, Estimated Defects

• Only applicable after the knee
• Assumptions : Stable Software

C0

95%
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Data Set: Pasquini
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Estimation of Defect Density

Measure Coverage 
Achieved 

Expected 
Defects 

Block 82% 36 
Branch 70% 44 
P-uses 67% 48 

 

• Estimated defects at 95% coverage, for 
Pasquini data (assume 5% dead code)

• 28 faults found, and 33 known to exist
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Sequential execution

• Assume one module executed at a time.
• fi: fraction of time module i under 

execution; li its  failure rate 
• Mean system failure rate: 

ll ii

n

1=i
sys  f  = å
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Sequential Execution (cont.)

• T: mean duration of a
single transaction

• module i is called ei times
during T, each time
executed for duration di

T
de = f ii

i

di

T

i called 3rd time
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Sequential Execution (cont.)

• System reliability Rsys = exp(-lsys T)

• Since exp(-dili) is Ri, 

)  iii
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Sequential Execution Risk
• System Risk = Σ Risk due to failure type i

Called 
times

Av 
duration

Fraction 
of T

Failure 
rate

Av cost/
failure

Fail 
prob/T Risksi

Module i ei di fi = di/T λi Ci =1-exp(ei.di. λi)

potential 
loss per 

trans

a 1 3 12% 0.01 20 0.030 0.59

b 2 4 32% 0.03 100 0.213 21.34

c 7 2 56% 0.001 200 0.014 2.78

Total time T 25 100%

Total 
risk 24.71
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Concurrent execution

• Concurrently executing 
modules: all run without 
failures for system to run

• j concurrently executing 
modules

ll j

m

1=j
sys   = å

time
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N-version systems: Correlation

• 3-version system
• q3: probability of all three versions failing for the 

same input.  
• q2: probability that any two versions will fail 

together. 
• Probability Psys of the system failing for a 

transaction 
q3 + q = P 23sys
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N-version systems: Correlation
• Example: data collected by Knight-Leveson;  

computations by Hatton
• 3-version system, probability of a version failing 

for a transaction 0.0004 
• in the absence of any correlated failures 

• Uncorrelated improvement factor of 0.0004/4.8 x 
10-7 = 833.3

10 x 4.8 =
)00040.0004)(0.-3(1 + )(0.0004 = P

7-

2
sys

3
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N-version systems: Correlation

• Uncorrelated improvement factor of 
0.0004/4.8 x 10-7 = 833.3

• Correlated: q3 = 2.5´10-7 and q2 = 2.5´10-6

• Psys = 2.5´10-7 + 3´2.5´10-6 = 7.75´10-6

• improvement factor: 0.0004/7.75´10-6= 51.6
• state-of-the-art techniques can reduce defect

density only by a factor of 10!
• Thus 3-version system may be worth

considering in some cases.

q3 + q = P 23sys



Reliability Allocation for 
Software Systems

Ø a block i is under execution for a fraction xi of the 
time where Sxi = 1 

Ø Reliability allocation problem 
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Solution using Lagrange multiplier

Ø solutions for the optimal failure rates 

Ø optimal values of test times d1 and di, i≠1 
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Ex: Optimal: Software with 5 blocks

Ø Optimal when all modules have the same failure rate!

Block B1 B2 B3 B4 B5

Size KSLOC 1 2 3 10 20

Ini Defect 
density

10 10 10 15 20

βi     4.59´10-3 2.30´10-3 1.53´10-3 4.59´10-4 2.30´10-4

λi0 0.046 0.046 0.046 0.069 0.092

xi 0.028 0.056 0.083 0.278 0.556

Optimal λi 0.04 0.04 0.04 0.04 0.04

Optimal di 30.1 60.1 90.2 1184 3620

λST ≤ 0.04



Standard RAID levels
• RAID 0: striping 
• RAID 1: mirroring
• RAID 2: bit-level striping, Hamming code for 

error correction (not used anymore)
• RAID 3: byte-level striping, parity (rare)
• RAID 4: block-level striping, parity 
• RAID 5: block-level striping, distributed parity 
• RAID 6: block-level striping, distributed double 

parity 
5/6/21 FTC YKM 29



RAID 0
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• Data striped across n disks 
• Read/write in parallel
• No redundancy.

• Ex: 3 year disk reliability = 0.9 for 
100% duty cycle. n = 14

• Rsys = (0.9)14  =  0.23

Õ
=

=
n

i
isys RR

1



RAID 1
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• Disk 1 mirrors Disk 0
• Read/write in parallel
• One of them may be used as 

backup.

• Ex: 3 year disk reliability = 0.9 for 
100% duty cycle. n = 7 pairs

• Rsys = (2x0.9-(0.9)2)7  =  0.93

Õ
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n

i
isys RR

1

2 ])1(1[

Failed disk identified using internal CRC



RAID 5

5/6/21 FTC YKM 32

• Distributed parity 
• If one disk fails, its data can 

be reconstructed using a spare

• Ex: 3 year disk reliability = 0.9 for 
100% duty cycle. n = 13, j = 12, 13

• Rsys =  0.62
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RAID 10
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• Stripe of mirrors: each disk in 
RAID0 is duplicated.

• Ex: 3 year disk reliability = 0.9 for 100% 
duty cycle. ns = 6 pairs, 

• Rsys =  0.94

Õ
=

--=
ns

i
isys RR

1

2 ])1(1[

RAID 10: redundancy at lower level



RAID 10: Example
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• Consider 10 disks where 5 disks are of type A each having a 
reliability of 0.5 for 100% duty cycle, and the other 5 disks are 
of type B each having a reliability of 0.75 for 100% duty cycle. 
What is the system reliability if the disks are arranged in a 
RAID 10 structure where each disk of type A is paired with a 
disk of type B holding the same data?

• 𝑅!"! = ∏#$%
& 1 − 1 − 𝑅' 1 − 𝑅(

• Rsys =  [1-(1-0.5)*(1-0.75)]^5 = 0.5129

Pairing two types of disks makes a good question to 
test  understanding. In practice ….



RAID 01
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• Mirror of stripes: Complete 
RAID0 is duplicated.

• Ex: 3 year disk reliability = 0.9 for 100% 
duty cycle. ns = 6 for each of the two sets, 

• Rsys =  0.78

])1(1[ 2
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RAID 01: redundancy at higher level



RAID4 - MTTDL 
Calculation
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¨ RAID 4/5: data is lost if the second  disk fails before the first failed 
(any one of n) could be rebuilt.

¨ Detailed MTTDL calculators are available on the web.  
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Terminology
• Check-pointing: saving part of the process state

§ Registers affected
§ Context
§ Part of the state (registers, memory) affected by next 

process segment
§ Entire data base etc.

• Rollback: reestablishing a state of the process
• Audit Trail: chronological record of all 

transactions
• Retry: reexecution after rollback (inc. audit-

trail reprocessing)
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Analysis of 
Overhead

rollback.  to timeanderror   toduelost   timeincludes
overhead Note factor. nutilizatio isk  where

)
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overheaderror  T}.avg duringP{error V(T)
: retry time Average

retry time Average:V(T)
infochkpt  save/load  to timefixed : Fwhere

V(T)FO(T)
:Tper  Overhead

backchkpt/roll during orsinputs/err  No
error chkpt tolast  from duration  retry time Additional

T: timeinterchkpt,λ :rate arrivalFault 
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Justification?

Why 
T/2?
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Analysis of Overhead (2)

rate processing ntransactio
rate arrival ntransactiok :Note
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Ex: l =0.01, k=0.3, F=10

yields Topt=81.6 (above)
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Computing              

Detection Capability

• All single bit errors result in non-code words. Thus all 
single-bit errors are detectable.

• Error detection capability: min Hamming dist dmin, p: 
number of errors that can be detected 

p+1£ dmin    or pmax = dmin - 1

000 001

100

010

011

111

101

110
Ex 1: consider code:
000
011
101
110
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Tolerant 

Computing              

Errors Correction Capability

• Assume single-bit errors are more likely than 2-bit errors.
• In Ex 2 all single bit errors  can be corrected. All 2 bit 

errors can be detected.
• Error correction capability: t: number of errors that can 

be corrected:
2t+1 £ dmin or tmax=ë(dmin-1)/2û

Ex 2: Consider a 
code

000
111

000 001

100

010

011

111

101

110

Proof?
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Computing              

Parity Check Matrix: Ex
1 0 0 1 1

v  = (1 0 1) 0 1 0 1 1
0 0 1 1 0

v = (1 0 1 0 1)

H=
1 1 1 1 0

1 1 0 0 1
1 1

1 1
(1 0 1 0 1) 1 0 = (0 0)

1 0
0 1

v.Ht is
0 1

c11/6
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Computing              

Systematic Cyclic Codes
• Ex: G(x)=x4+x3+x2+1   n-k=4, n=7

message x4M(x) C(x) codeword
000 0(00 000) 0(0000) 000 0000
110 x6+x5 (1100000) X3+1(1001) 110 1001
111 x6+x5+x4(1110000) x2(0100) 111 0100

• An error-free codeword divided by generator 
polynomial will give remainder 0. 

c10/30



Formal definition:
n Risk due to an adverse event ei

Riski = Likelihoodi x Impacti
n Sometimes likelihood is split in two factors

Likelihoodi = P{holei present}.  
P{exploitation|holei present}

n A specific time-frame, perhaps a year, is 
presumed for the likelihood.

Risk as a composite measure

May 6, 2021 44

In classical risk literature, the internal component of Likelihood is termed “Vulnerability” and external “Threat”. 
Both are probabilities. There the term “vulnerability” does not mean a security bug, as in computer security.



Likelihood & Impact scales

n Quantitative or descriptive levels
q Number of levels may depend on resolution achievable

n Scale: Logarithmic, Linear or combined
n Risk = Likelihood x Impact

q Log(Risk) = Log(Likelihood) + Log( Impact)
n If “Score” is proportional to Log value

q Risk score  = Likelihood score + Impact score

q Adding scores valid if  scores represent logarithmic values.



Vulnerability Lifecycle

46

Vulnerabilities: “defect which enables an attacker to bypass 
security measures” [Schultz et al]

Exploit code (“exploit”) : usually available after disclosure 



Time–vulnerability Discovery model

Vulnerability time growth model

Time
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3 phase model S-shaped 
model.
• Phase 1:

•Installed base –low.
• Phase 2:

•Installed base–higher and 
growing/stable.

• Phase 3:
•Installed base–dropping.
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Windows 98

A 0.004873

B 37.7328

C 0.5543

χ2 7.365

χ2
critial 60.481

P-value 1- 7.6x10-11

Time–based model: Windows 98
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Vulnerability density and defect density

q Vulnerability densities:  95/98: 0.003-0.004  NT/2000/XP: 
0.01-0.02   

q VKD/DKD:   0.68-1.62%    about 1%

System MSLOC
Known
Defects
(1000s)

DKD
(/Kloc)

Known 
Vulner -
abilies

VKD
(/Kloc)

Ratio
VKD
/DKD

Win 95 15 5 0.33 46 0.0031 0.92%
NT 4.0 16 10 0.625 162 0.0101 1.62%
Win 98 18 10 0.556 84 0.0047 0.84%

Win2000 35 63 1.8 508 0.0145 0.81%

Win XP 40 106.5* 2.66* 728 0.0182 0.68%*
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Multi-version Vulnerability Discovery 
Model

Multiple Software Vulnerability Discovery 
Trend

Calendar Time

V
ul

ne
ra

bi
lit

y 
D

is
co

ve
ry

 r
at

e

1st Version 2nd Version
Shared part Total Version Trend
Total Version Trend

Previous 
Version

Next 
Version

Shared 
Code 

Ratio α

Apache
1.3.24
(3-21-
2002)

2.0.35
(4-6-
2002)

20.16%

Mysql
4.1.1

(12-1-
2003)

5.0.0
(12-22-
2003)

83.52%



Seasonal Index
Seasonal Index Values
WinNT IIS IE

Jan 1.95 1.36 0.41
Feb 0.93 0.91 0.86
Mar 0.56 0.81 0.59
Apr 0.60 1.00 0.78
May 0.84 1.09 1.11
Jun 1.12 1.55 1.22
Jul 0.84 1.00 1.43
Aug 0.79 0.64 1.14
Sep 0.51 0.55 0.70
Oct 0.65 0.55 0.54
Nov 0.84 0.64 0.70
Dec 2.37 2.55 2.51

19.68 19.68 19.68
78.37 46 130.43

p-value 3.04e-12 3.23e-6 1.42e-6

51

• Seasonal index: measures how much 
the average for a particular period 
tends to be above (or below) the 
expected value

• H0: no seasonality is present. We 
will evaluate it using the monthly 
seasonal index values given by [4]:

where, si is the seasonal index for ith
month, di is the mean value of ith
month, d is a grand average

[4] Hossein Arsham. Time-Critical Decision Making for Business Administration. 
Available: http://home.ubalt. edu/ntsbarsh/Business-stat/stat-data/Forecast.htm#rseasonindx



CVSS Base metric: Observation

n Exploitability sub-score - measure of Likelihood of exploitation of the 
vulnerability.

n Impact sub-score - a measure of Impact.
n CVSS Base Score is a form of a risk measure. They could have 

computed CVSS Base Score by simply multiplying the Exploitability
and the Impact sub-scores. It would result in a similar distribution of 
score with somewhat better resolution.

n CVSS Base Score for prioritizing vulnerabilities. Base score 7.0-10.0 
critical, 4.0-6.9   major, 0-3.9   minor.

n The CVSS Base Score formula was determined by a committee and 
not formally derived or explained.

May 6, 2021 52



• Ease of discovery 
n Human factor (skills, time, effort, etc.), Discovery technique, Time

• Time:

53

Time to Discovery = Discovery Time Date – First Effected 
version Release Date  

§ Apache HTTP server
§ CVE-2012-0031, 
(01/18/2012)
§ V. 1.3.0à1998-06-06

Likelihood of Individual Vulnerabilities Discovery



Types of Vulnerability Markets

54


