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Midterm:
e Sec 001 Th Mar 11, 3:30-4:45 PM

— Also for Sec 801 Local students, not working full time
* Sec 801 distance students Mar 11 3:30-Mar 12 4:45PM

 Respondus Lockdown browser
— Closed book/notes
— Built-in Scientific calculator in browser

— One blank sheet permitted

* Show both side at the beginning and at the end
* Destroy on camera

* Formula sheet? No.
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How to prepare for the Midterm

Attentively attend lectures

— linking concepts and methods critically
e Quizzes. Find out why.
PSA1: Ask why.
You should be able

— Solve similar and related problems.

— Explain why.
— Apply principles to solve new problems.
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Topics

 Terminology and ideas
* Digital Systems, Fault Modeling
* Combinational & Sequential Circuit Testing
* Probabilistic Methods
 Random Testing
* Reliability: combinatorial and time dependent
- Software Reliability:
— Static modeling, Module size, SRGM
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Combinational Example

X1’
x2x3 . S i
x1 [ x2|x3 | f X 00 01 11 10 X2 f
o o [0 [o "o To o [d]D X1 /D
O |0 |1 0 1 ? 0!0 i X3’ _ >
O |1 1|0 1 , ,
o |1 (1 1 Xt )
x3 X2 .
1 /0 |0 |1 Implementation A “q = \
1.0 |1 |o F=x1"x2 + x1x3’ X3’ _W
1 (1 |0 1 1T 7 .
1 11 11 lo Implementation B X2 | tuck-at-0
F=x1"x2 + x1x3’ + x2x3’ X3’ 4 ) untestable
Note that the x2x3’ term is redundant. redundant
Here a prime indicates complement. A stuck-at-0 fault makes the line always stay at 0
regardless of what it is supposed to be.
Qollo f(’,i‘di@ March 9, 2021 .
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FSM Description

Input x
Format:
state 0 1 x/z
112,1|3,0
2 12,14,0
3 |1,04,0
4 13,13,0 given
Entries: N,Z
input 0 1 0
state 1 2 4
output 1 0 1

Based on FSM state table

%([,D:ﬂ?x(l@ March 9, 2021 Fault Tolerant Computing (or state dlagra?)
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Stuck-at 0/1 Model

Classical model, well developed results/methods

— Many opens and shorts result in a node getting stuck-at
aOor1.

May not describe some defects in today’s VLSI.

— still a nice way of structural “probing”. Covering all
stuck-at 0/1 will result in covering a large fraction of all
faults.

Model: any one or more of these may be stuck at
0 or 1: a gate input, a gate output, a primary input.
Justification: many lower level defects can be

shown to have an equivalent effect.
Common abbreviations:

) ‘ > .' s L] -l
w@@w{x‘l@ March 9, 2021 Fault Tolerant C s-a-0, s-a-1 7
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Single Fault Assumption

- Assumption: only one fault is present at a time.
- Significantly reduces complexity.

- Good for fault detection: complete single stuck
test set will detect almost all multiple faults.

- Not good for fault location.

- A Multiple fault is a simultaneous presence of
several single faults.

- How many multiple faults in a unit?
— Assume k lines
— 3 states per line: normal, s-a-0, s-a-1
— Total 3-1 faulty situations! (For k=1000, total 1.3x10%77)

One among 3k situations

Lwoé,@i‘@l:i@ March 9, 2021 Fault Tolerant Comput is a normal unit.
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Test coverage

- A single test typically covers (i.e. tests) for
several potential faults.
- The coverage obtained by a test-set can be
obtained using fault simulators for hardware.
- The test coverage achieved by a test-set is given
by ratio:
Number of faults covered

coverage

Total number of possible faults

By convention, coverage is evaluated for stuck-at 0/1 faults
in hardware, often given in percentage.

A kA .
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Test generation: Some Basics (2)
- All tests are contained in T, where T = f&f

i.e. T is the set of vectors for which normal and faulty outputs are different.

Example:
S'a"\ Ax 0 1 A{ 0 1 AY 0 1
A _} o |1 |1 o [t To] o (o [a ]
o 1 |1 |0 1 |1 |o 1 |0 |0
f = (AB)’ f =B’ fof,

T= A’B (01) is a test. The only test.

f®fa is 1 for combinations for

which Karnaugh maps of f

wﬁ\‘f’/}ﬂ?ﬂ@ March 9, 2021 Fault Tolerant Comput and fa are different.
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Boolean Difference: Internal Nodes

« Consider an internal node h=h(X) s-a-1. Express the original
function f(X) as f,,(X,h). Tests for h s-a-1 are given by

h(X) df,(X,h)/dh.

f(A,B,C)=AB+BC h(A,B)=AB

A h / fn(B,C,h)=h+BC
B j_l = ,(0,B,C)®f,(1,B,C) = (BC) &1

df/dh
| ) > _BC =B+C
o Ly I :
o0 01 11 10

L o A
T = h df,/dh = (AB)(B+C) = (A+B)(B+C) = AB+AC+BC o 11 1o 11 11

=010, 011, 000, 100 (four vectors!) 1 111/0!0 10

Al kAayesna .
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D-Notation

* Notation: Line has value D if it is 1 normally and 0
in presence of the fault. Line has value D ifitis0
normally and 1 in presence of the fault.

s-a-0 s-a-1
1\0 0\ D,

nPs ]

Rules of error propagation:

D D Gate {-\II other
D ] D inputs
0 D 1 _ ) AND, NAND | 1
— o OR,NOR |0
XOR o0, 1
@%O\ EL:—\) March 9, 2021 Fault Tolerané E;I&lg;ﬂy‘?ng 12



Single Path Propagation

h S-a-1

e T s
N

Single path propagation attempts to
propagate error using a single path

from the fault site to an output.

Excitation:

— h=0 normally. Need
A,B=0,0

Propagation:

— Other AND input:1

— Other OR input: 0

Justification:

— C=1 already. E=x (don’t
care)

Test is (0,0,1,x)

G O&h O‘_i‘(’;;‘ﬂ@ March 9, 2021
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Schneider’s Counterexample

- Try single path 2-6-8

- Excitation: D at 2: b,c=0,0
a @\—_D 4 -  Forward trace:
‘ 1 oO—— —_
) ) _"Dat6: d=0

b - > _ Dat8: 4,5,7=0,0,0
®02— Dg— - Implication:

IS-a-O/::i ) )f— — Since b=d=0, 3=1, 7=0
b - Line Justification (backward

d | o—1 trace):
— For 5=0: a=1

c — Hence 1=0, 4=1 (!)
— Inconsistency.

+ Multiple path propagation thru 5 and 6 works! . . .
Single path propagation fails.

* b,c=0,0; a,d=0,0 Thus (0,0,0,0) is a test.

%@Jf;ﬁl@@ March 9, 2021 Fault Tolerant Computing 14
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D-Algorithm EXx (part 2)

1
2 9
- Try: path 5-8-9
Table gives step-by-step values, until an
3 inconsistency is observed
Step 1 2 3 4 5 6 7 8 9
Initial 1 0 D b
58 1 0 D © D > D-drive
nconsistency! 89 1.0 D o0 1 D D ||
n N T 3
Need to = ¢ P 0o 1 BB Justifi-
Backtrack 3«6 1 0o 1 0 D O 1 D D |} _
= e cation
1,24 | ¢ 0 1 0 0 1 )
Qoo LO_@ March 9, 2021 Fault Tolerant Computing 15

©Y .K. Malaiya




Fault Collapsing (2)

- Equivalence: Faults o and B are equivalent if f =
f;. Then o and f affect the output in exactly the

same way. ‘For an N-input gate only n+2 faults need to be

considered

‘Ex: NAND gate: we only need to consider
/%\37 «Any input s-a-0 or output s-a-1 (count as 1)
All s-a-0 equivalent One input s-a-1 (total n such inputs)
*Output s-a-0 (1)

/@7 ‘Termed Equivalence fault collapsing

All s-a-1 equivalent

A kA )
w@r@f%}(}—@ March 9, 2021 Fault Tolerant Computing 16
b)%%]:o%? ©Y .K. Malaiya



Fault Collapsing (2)

- Dominance: A fault o dominates fault T
Bif TycT,, o
For detection only fault p needs to be Z
considered. For location, both need
to be considered separately (if
distinguishable)

B

Detection only attempts to identify
that the unit under test is faulty.
Example: T,= 0xx, x0x, xx0

8 s-a-1 T,= 011

o s-a-1
§} T,cT,

(0,1,1) will test for both o and p. No
need to use other tests if only detection

Is needed.
QolFRG®  vareno, 2021 Fault Tolerant Computin
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Fault Collapsing: Check-points (2)

- Theorem: In a combinational circuit, any test set that
detects all stuck faults on
— all primary inputs and These are appropriately
— All branches of fanout points } called Checkpoints

will detect all stuck faults in the network.

Incidentally a check-point
concept is also applicable for
software testing

H. Yin, Z. Lebne-Dengel and Y. K. Malaiya, “
Automatic Test Generation using Checkpoint
Encoding and Antirandom Testing” Int. Symp. on

Software Reliability Engineering, 1997, pp. 84-95.

R .
w@@-“s#’-@ March 9, 2021 Fault Tolerant Computing
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Checkpoints:
Example

- 12 nodes, two faults at each node (s-a-0, s-a-1)
thus 24 faults before collapsing.
« Checkpoints are:
— Primary inputs: a,b,c,d, e
— All branches of fan-out points: g,h
— Faults at checkpoints 7x2=14 faults

- Thus only 14 out of 24 need to be considered.

( byvesnn )
S 0&5}}&;}\&@ Mareh 9, 2021 Fault Tolerant Computing
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Why Test Set Reduction works

Generally one pattern tests for several faults, because
- With a given vector, several nodes will be critical.

A node is critical if a change in its logic value will change the output.

Example: Here the critical nodes are marked with a c. A node is critical
only under a specific input vector, here (1,1,0,0).

a1c

_ OC 1C
b1°| % }
J (1100) will detect a s-a-0, b s-a-0,
j) e s-a-1 and g s-a-0

Al Ay .
%%“sﬁ;‘l@ March 9, 2021 Fault Tolerant Computing 20

©Y .K. Malaiya




Test Set Compaction

- Minimize the number of patterns.

faults
Example: tests

a-0 a-1 b0 b-1 c0 c-1

a_ c 00 v

| ) o v v |
10 v \ ’
1| V \ J

Answer: 01, 10,11 will test for all the faults. Thus no need to apply 00.

In practice heuristics are used, complete optimization is not needed.

19S WNWIUIp
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Fault
distinction

There is one fault

- Preset test set: no decision making
during testing
- Adaptive: successive narrowing down

Fault | Test i, Test t, Test 3
f4 tests doesn’t tests
fs tests tests doesn’t
fa doesn’t tests tests

Assuming equal probability 1/3 for each

fault, average number of tests

to identify the fault= 2x 1/3+2x1/3+1 x1/3 =

1.7 vectors!

‘Preset approach:
‘Get response to t; t, t;
‘Then Identify.
-Adaptive: Apply t,
—

No detection Detection

A Apply t3
—_—

Detection No det.
f, f2

(@ o&({)}r@&@ March 9, 2021
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BIST (Built-in self-test)

Generator
4 ﬂ N\
Combinational circuit
g J

|

Signature analyzer

ALFSR: autonomous linear
feedback shift register.
Better generators include our

antirandom test generator.

Generator generates
pseudorandom vectors. Often an
ALFSR.

Signature analyzer compresses
all successive responses into a
signature. Usually an LFSR.

Compared with known good
signature.

Aliasing probability: prob. that a
bad circuit can result in good
signature. Generally very small.

( G‘O&h O‘_i‘(’ro:Ld_L(D March 9, 2021
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Sequential Circuits with feedback:
Scan-chain approach

- Design for testability: feedback-less during
testing. The flip-flops can be configured to form

scan-chains. _
- Scan Design: modes

Parallel in Parallel out - Normal mode: parallel in/out
— Comb. N - Test mode: serial infout

” Sequence of operations

Scan a vector: test mode

Serial in

1 « Latch response: normal mode
Scan response out: test mode

) If scan-chain too long

_ Use Multiple chain

Model control Serial out ]
— — « Use Partial scan

w&@-@@@ March 9, 2021 Fault Tolerant Computing 24
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Incremental Testing Approach

- Partition system into layers
such that layer i can be exercised
using only layers 0, .. i-1.

- Test components in each layer in
the sequence LO, L1,..Ln.

- Layering may require
— Assumptions
— Disabling feedback during testing

- Proofs of complete coverage

D Brahme, JA Abraham, Functional
Testing of Microprocessors, IEEE Trans can be constructed.

Comp, Jun 1984, pp. 475- 485.

« Fault isolation can be done.

) * ‘ AN ; .
Qo WIUEO) March 9, 2021 Fault Tolerant Computing 25
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Distributions, Binomial Dist.

Note that [fde=1"3 p(x)=1

Major distributions:

— Discrete: Bionomial, Poisson
— Continuous: Gaussian, expomential

Binomial distribution: outcome is either success or failure
— Prob. of r successes in n trials, prob. of one success being p

f(r)= " pd-p)"" for r=0,...,n

r
. n |
incidentally _nC = n
r
v rl(n—r)!
QOOFRAD v, 20m Fault Tolerant Computin
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Distributions: Poisson

Poisson: also a discrete distribution, A is a parameter.

fo=2¢

x!

Example: p = occurrence rate of something.
— Probability of r occurrences in time t is given by

(,U l) r e Ut Often applied to fault
f (I” ) = arrivals in a system
r!
%%ﬂ;%(l@ March 9, 2021 Fault Tolerané gfl&lgg‘gng 27



Exponential Distribution: Is a

continuous distribution.
— Density function @
f(t) =\ et O<t<wo

Exponential & Weibull Dist.

Example:

A

A: exit or failure rate. X
Pr{exit the good state during (t, t+dt)} N
=e M) dt g
The time T spent in good state has 0

an exponential distribution

ot

Weibull Distribution: is a 2- TS

parameter generalization of
exponential distribution. Used when
better fit is needed, but is more
complex.

100

time

150

) oAl .
COOIRAAD  maren 5,201 Fault Tolerant Computing
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Poisson Process: properties

- Poisson process: A Markov counting process N(t),
t > 0, N(t) is the number of arrivals up to time t.

- Properties of a Poisson process:
— N0)=0
— P{an arrival in time At} = AAt
— No simultaneous arrivals

- We will next see an important example. Assuming
that arrivals are occurring at rate A, we will calculate
probability of n arrivals in time t.

Al Ay .
w@@f 20O March 9,201 Fault Tolerant Computing
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Poisson process: analysis

- A process is in state |, if | arrivals have occurred.
- Pi(t) is the probability the process is in state i.

A A A A
- In state i, probability is flowing in from state i-1, and is

flowing out to state i+1, in both cases governed by the rate A.
Thus

I arrivals

dP (1
c}f ) - _AP($)+ AP (£) n=0lL.
We’'ll solve it first for Py(t),
w&@_&g@@ March 9, 2021 Fault Tolerant Computing then for P1 (t), then e
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Poisson Process: General solution

We need to solve (P (¢)
dt

= —AP()+ AP_(f) n=0,],.

Using the expression for Py(t), we can solve it for P,(t).

Solving recursively, we get

P()_(/It)

n. Poisson distribution!

n = 0919-- Which we know is

Qol} @ ﬂr.x_\) March 9, 2021 Fault Tolerant Computin
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Coverage Achieved

Coverage grows fast in the beginning,
saturates near end. 0.975,

Is it described by
C(L)y=1—e"%29
No, doesn’t fit.

It is controlled by distribution of
detectability of faults. 0.274, | | |

0 5 10 15 20

Detectability profile (Malaiya &Yang 1 L 16,
984): vectors

"= {hl'hz'".hN} « Total faults M = Xh,,
N: total possible vectors

h,: number of faults detected by exactly” h;: number of least testable
k vectors. faults

0.75 I~ =

Cr(L) 0.5 =

expexted coverage

0.25 1~ 7

Ex: Circuit with higher

%@.m@ h, would be harder to .
AU
Dolasiny test.



Coverage with L random vectors

h, out of M defects detectable by exactly k vectors:
detection probability k/N

P{a defect with dp k/N not detected by a vector}(:— —)
P{a defect with dp k/N not detected by L vectors)=- ﬁ)L

Of h, faults, expected number not covered il — E)L h,
Expected test coverage with L vectors N

C(L)—1—i(1—th—k
o NM

%@ A0 e FTC YKM

Er
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Detectability Profile: Software

- Software detectability

profile is exponential

- Justification: Early testing
will find & remove easy-to-

test faults.

- Testing methods need to

focus on hard-to-find
faults.

As testing time progresses, more of
the faults are clustered to the left.

0.8 4

s 0.6 4

0.4

0.2 4

Hard to test Low hanging fruit

(@ O&h @_r‘(;;‘\(]_@ 3/9/21

["s EA\
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Implications: Fault Seeding

- A program has x defects. We want to
estimate x.

- Seed j new faults.

Do some testing. Let faults found be j,
seeded faults and x, original fgg]tﬁl. J

. Assuming j/j = x;/x we get Ji

However, in reality the x faults include
harder faults;to test,
IS pence x> 2 %)

J X Ji

35



Mean Time to Failure (MTTF)

- There is a very useful general relation between MTTF and R(t).
Here T is time to failure, which is a random variable.

_____________________________________

Note
%0 | R(t) = 1—- P{failure in (0,1)}
MTTF = E(T) = j t f()dt 5 =1-P0<T <1}
| =1-F(1)
JR ( t) ' dF(t) __dR()
_ j T dt
: _dR(1)
o A
=[-tR(1)], +IR(f)df D 7
= ’ ; xem > 0asx— oo :
Thus MTTF = J. R@)dt | ™ | and R(t) is generally of the form e ™t
Remembering! ! 1
0 ' Thus tR(t) > 0 as t — oo. '

Qo) ’@ BR0O)  wacho. 202 Fault Tolerant Computing 36
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Failures with Repair

Time between failures: time to repair + time to next failure

(1] H bR
failure operational operational
|
X TTF .
good < FBE >
|
Under repair Under repair

“repair”

MTBF =MTTF + MTTR
MTBF, MTTF are same same when MTTR =0

- Steady state availability = MTTF / (MTTF+MTTR)

37
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Mission Time (High-Reliability Systems)

* Reliability throughout the missic
must remain above a threshold
reliability Ry,

Mission time Ty: defined as the
duration in which R(t)>Ry,.

* Ry, may be chosen to be perhaps
0.95.

« Mission time is a strict measure,
used only for very high reliability
missions.

1

thr
0.75 4

R(t)

0.25 A

Tm

20

time

40

QolorEato
A AL March 9, 2021
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Basic Cases: Single Unit with
Permanent Failure

- Failure rate is the probability of failure/unit time
- Assumption: constant failure-rate A

Z(t)=A
Good Bad The state transition diagram &
0 1 the differential equation represent
What we call Markov Modeling.
dp, (1) | |
c(z)’ =-A p,(#) since the rate of leaving state 0 depends
5
on probability of being in state 0
p,(0)=1 initial condition

%%ﬂ;%l@ March 9, 2021 Fault Tolerané gfl&lgg‘gng 39



Single Unit with Permanent Failure (2)

dp, (t |
200 _ ) py (o N
dt \ikt
po(0) =1 =z AN
Solution : p,(t)=e " = \\
NG
~—
Since R(t) = pO (t) " 0 1771 100 150
R(t)=e"' e
"The Exponential reliability law "
At t= l, R(t)=e"' =0.368
A
Qo @" A  warcns, 202 Fault Tolerant Computing 40
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Single Unit: Permanent Failure (3)

Ry
R(t)=e . Ex 1: a unit has MTTF

=30,000 hrs. Find failure rate.

A1) i R(?) in thi .
(¢) is same as R(z) in this case. 1 10 1003 3x10-5/h

—At * Ex 2: Compute mission time T
MTTF = g R(t)dt = { e M dt R, 0 oy M
iy e*™M =0.95 T,=-1In(0.95)/ A
-7 ~0.051/ A
4 « Ex 3: Assume A=3.33x10 and
_ 1 R, =0.95 find Ty,
A Ans: Ty, = 1538.8 hrs
(compare with MTTF =30,000)
COlOFEG® o, 20 Fault Tolerant Computing 41
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Single Unit: Temporary Failures(1)

- Temporary: intermittent, transient, permanent with repair

bad
good gl L pim
A dpo (1) Note state diagram &
dt =—4 Po )+ p, () Differential equations for
Good Bad Markov modeling
0 1 P Po(t) = p(2)

can be solved by laplace transform etc.

—(A +u)t H ~(A
Y. K. Malaiya, S. Y. H. Su: Reliability Po (f) = Py (0)8 (2 +2) + —(1 —e ( w)t)
Measure of Hardware Redundancy ﬂ + lu
Fault-Tolerant Digital Systems with
Intermittent Faults. IEEE Trans. : : . )
Computers 30(8): 600-604 (1981) Similarly we can get an expression for p, (t), howeverit is

not needed since p, (t) =1-p, (t).

A kAavesna )
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Single Unit: Temporary Failures(2)

o po (1) = py(0)e " 4 —E_(1— g Ay
A+ u

e Availability A(t) = p,(¢?)
Thus A(t) = p, (O)e—(/i +u)t 4 %(1 _ e—(ﬂ +ﬂ)t)

TH
e Note that steady — state probabilities exist :

A
t— o0, py(2) Zﬁ D, (1) Zm
7

A+ 1

e Steady - state availability 1s

P PROE | .
wa@:" @00 March,2021 Fault Tolerant Computing
% ©Y K. Malaiya
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Series configuration

Series configuration: all units are essential. System fails if one of them
fails .

- Assumption: statistically independent failures in units.

R, = P{U, good (U, good (U, good} Ui U |Us[®

= P{U, g} P{U, g} P{U, g}
= RR,R,

In general R, = H R,

i=1

COlOIEG  March 9, 2021 :
v a aren Fault Tolerant Computing 44
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Series configuration

The reliability block

diagrams like this are only
conceptual, not physical.

— U, U,

At

IfR.(f)=e ™

then Rs (t) = He_lit — e‘[/11 +A y+ At

1.e. system failure rate is the sum of individual failure rates :

A=A, +A ,++ 4

This gives us a nice way to estimate the overall failure rate, when all

Us

—eo

the individual units are essential. This is the basis of the approach
used in the popular “Military Handbook” MIL-HDBK-217 approach for

estimating the failure rates for different systems.

The failure rates of individual units are estimated using empirical

formulas. For example the failure rate of a VLSI chip is related to its

complexity etc.

A kA .
w@@l—“:’{\“—@ March 9, 2021 Fault Tolerant Computing
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Combinatorial: Parallel

Parallel configuration: System is good when least one of the
several replicated units is good. A parallel configuration
represents an ideal redundant system, ignoring any overhead.

¥ R =1-Plall units bad}
1
= 1- P{U, bad NU, bad NU, bad}
U, —1- P{U, b.\P{U, b.\P{U, b.}
=1-(1-R)(1-R,)(1-R;)
U; "
In general R =1- H (1-R)
i=1
l.e. ES = H El Where R represents
i—1 1-R, i.e. “unreliability’
@%ﬁ@@ March 9, 2021 Fault Tolerané E;I&lg;ﬂy‘?ng 46
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Triple Modular Redundancy

- Popular high-reliability
scheme: 2-out-of-3 system

- Output is obtained using a :C
majority voter

v

A 4
-t

v
N

A 4

R.. = & R'(1-R)™
TMR ~— .
i=2 \ 1 Where R is the reliability of a
single module. This assumes
=3 R2 (1 — R) + R3 that the voter is perf_ect, a
reasonable assumption if the
_ 3R2 . 2R3 voter complexity is much less
o than an individual module.
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Triple Modular Redundancy

Here is a plot of the system reliability, when
the individual module reliability varies
between 0 to 1.

[=]
~)
W

IS
n

Note that if the reliability of an individual
module is less than 0.5, it is more likely to 0.25 1
be bad. Having several such modules, and
taking majority vote, will actually make the 0 025 05 s 1
system less reliable, as you see in the figure. Module Reliability

System Reliability

—e— k-out-of-n

'smgle

A political application of the principle: majority-
based democracy works only if the individuals
are more likely to make the right decision than
wrong!

VA .
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TMR: Permanent Failures

[etR =e™*'

24t 34t
R, () =3e"" —2e o |
e When is a single module as reliable as TMR?

MTTF = jRTMR (t)dt Solving3R* —2R’ =R
0 wegetR__ =0.5.

Cross

TMR worse after R <0.5!

= [(Be™ —2¢7 )t
0

S (single module MTTF l)
6 A

MTTF may not be a good
measure when very high
reliability levels are maintained.

Thus TMR has a lower MTTF than a single module!

COOFEAAD  march o, 201 Fault Tolerant Computi
o . puting 4
ﬁi&l&; OY K. Malaiya )

LLIVCTIS IO



Imperfect Coverage: Example

. U, . ORS =R1+R2C(1'R1)
e Assuming R, =R, =0.7
U2 n—1
elngeneral R, =R, ) C'(1-R,)’
i=0
1
0.9 - '
o Note that better coverage
= 087 improves the reliability. When
3 07 | coverage =1, full potential of the
© parallel configuration is achieved.
0.6 - Two parallel modules
0.5 . . .
0 0.25 0.5 0.75 1
Coverage
Cal @-f',(}‘«li@ March 9, 2021 Fault Tolerant Computing 50
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TMR+Spares

TMR core, n-3 spares (assume same failure
rate)

Scheme A: System failure when all but one
modules have failed. If we start with 3 in the
core and 2 spares, the sequence will be TMR

3+2 - 3+1 > 3+0 > 2+0 — failure
Reliability of the system then is
R.=R,[1-nR(1-R)™'-(1-R)"]
Where R is reliability of a single module and spares

R, is the reliability of the switching circuit
overhead. =

R, should depend on total number of modules
n, and relative complexity of the switching
logic.

Let us assume that R,,=(R?)",

where a is measure of relative complexity,

generally a <<1. Then

<
core

Rs=R2"[1-nR(1-R)"1-(1-R)"]

Disagreement

AAA

detector

A 4

N

A 4

Switching

Y

circuit

\ 4

A 4

KC\/QEP AAO  wareno, 2021 Fault Tolerant Computing
\ L\/ ©Y .K. Malaiya
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Why is Defect Density Important?

 Important measurement of reliability
* Often used as release criteria.

« Typical values of defect density /1000 LOC mentioned in literature:

Beginning On Release

Of Unit :

Testing Fr.equéntly Highly NASA
Cited in Tested Space
literature programs Shuttle

Software
16 2.0 0.33 0.1

Long term trend: tolerable defect density limits have been gradually dropping, i.e.
reliability expectations have risen.

Note: NASA space shuttle controversy: see
appendix.

) } ~r
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A Static Defect Density Model

Li, Malaiya, Denton (93, 97)

D=C.F,,.F,.F,.F.F,

@%‘:ﬁ())r‘;@@

A
O A %
HLVCIS LY

C is a constant of proportionality,
based on prior data, used for
calibration.

Default value of each function
(submodel) is 1.

Each function F,is a function of
some measure of the attribute.

Possible factors
Phase
Programming Team
Process Maturity
Structure

Requirement Volatility

3/9/21
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Reuse factor: A simple analysis

u: fraction of software reused

* d,., d, : defect density of reused software, defect
density of new software, d.<d,
* Total defects = [u. d.+(1-u). d ]S
Where S is software size

e If there was no reuse, defects would be d, S

Normalizing,
— Reuse factor F.(u, d,/d,)=[u. d,/ d, +(1-u)]

— F,is 1 if there is no reuse, <1 if reuse.

Sa

O 1} el 1
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Static Model: Example

D = C.F,,.F,.F,.F.F,,

*For an organization, C is between 12 and 16. The team has average
skills and SEI maturity level is II. About 20% of code in assembly.
Other factors are average (or same as past projects).

Estimate defect density at beginning of subsystem test
phase.
*Upper estimate=16x2.5x1x1x(1+0.4 x0.20)x1=43.2/KSLOC
*Lower estimate= 12x2.5x1x1x(1+0.4x0.20)x1=32.4/KLOC

Here the structure factor is 1+0.4x0.20 because of some assembly
code. Factor 2.5 is for the beginning of the subsystem phase.

A b AvesyA
LC‘\(LQ@.Q;L‘&@ 3921 5
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Exponential SRGM Derivation Pt 1

= Notation
» T,: average single execution time
 k.: expected fraction of faults found during T

e T, : time to execute each program instruction once

-~k NG — }

Notation: Here we replace
dN (t K P
. ( ) — N(f) — ﬂlN(t) K, and Ts by more
dt TL convenient K and Ty
T, . .
where K = & —= 1s /fault exposure ratio
T
S
Qolloraalo 3/9/21
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Exponential SRGM Derivation Pt 2

We get
N(1)=N(0)e""

uO)=pB,(1-¢"")  A)=p,B e

The 2 equations
contain the
same

information.

* For t—oo, total B,=N(0) faults would be eventually

Colo

detected. A “finite-faults-model .

Assumes no new defects are generated during

debugging.

Proposed by Jelinski-Muranda 71 Shooman ‘71,
Goel- Okumoto “79 and Musa ‘75-" 80. also called

Basic.

)
"‘J
.3

\

..........
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A Basic SRGM (cont.)

Note that parameter 3, is given by:

K _ K
. s0Y
2

B,=

S: source 1nstructions,

Q: number of object instructions per source instruction
typically between 2.5 to 6 (see page 7-13 of

r: object instruction execution rate of the computer

K: fault-exposure ratio, range 1 X 107 to 10 X 10”7, (tis in
CPU seconds). Assumed constant here*.

Q, r and K should be relatively easy to estimate.

*Y. K. Malaiya, A. von Mayrhauser and P. K. Srimani, "An examination of fault exposure ratio,“

in IEEE Transactions on Software Engineering, vol. 19, no. 11, pp. 1087-1094, Nov 1993
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http://www.cs.colostate.edu/~cs530/rh/section7.pdf

SRGM : “Logarithmic Poisson”

Many SRGMs have been proposed.

Another model Logarithmic Poisson model, by Musa-
Okumoto, has been found to have a good predictive
capability

_ _ BB,
HO)=p,In(1+ 5,1 A(Y 1+ p1

Applicable as long as u(t) < N(0). Practically always
satisfied. Term infinite-faults-model misleading.

Parameters B, and B, don’t have a simple interpretation.
An interpretation has been given by Malaiya and Denton (

).

A=A by
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http://www.cs.colostate.edu/~malaiya/p/denton97.pdf

Example: SRGM with Test Data (cont.)

Figure 1: Using an SRGM
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