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Fault Tolerant Computing: 
Midterm Review

Midterm: 
• Sec 001  Th Mar 11, 3:30-4:45 PM

– Also for Sec 801 Local students, not working full time
• Sec 801 distance students Mar 11 3:30-Mar 12 4:45PM
• Respondus Lockdown browser

– Closed book/notes
– Built-in Scientific calculator in browser
– One blank sheet permitted

• Show both side at the beginning and at the end
• Destroy on camera

• Formula sheet? No.
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How to prepare for the Midterm

• Attentively attend lectures
– linking concepts and methods critically

• Quizzes.  Find out why.
• PSA1: Ask why.
• You should be able 

– Solve similar and related problems.
– Explain why.
– Apply principles to solve new problems.
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Topics

• Terminology and ideas
• Digital Systems, Fault Modeling
• Combinational & Sequential Circuit Testing
• Probabilistic Methods 
• Random Testing
• Reliability: combinatorial and time dependent
• Software Reliability: 

– Static modeling, Module size, SRGM
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Combinational Example

x1 x2 x3 f
0 0 0 0
0 0 1 0
0 1 0 1
0 1 1 1
1 0 0 1
1 0 1 0
1 1 0 1
1 1 1 0

00 01 11 10

0 0 0 1 1
1 1 0 0 1

x2x3
x
1

x3

x2

Implementation A

F=x1’x2 + x1x3’

Implementation B
F=x1’x2 + x1x3’ + x2x3’

X1’

x2

x1

X3’

X1’

X3’
x2

X3’

x2

x1

f

f

xStuck-at-0

untestable

redundantNote that the x2x3’ term is redundant.
Here a prime indicates complement. A stuck-at-0 fault makes the line always stay at 0 

regardless of what it is supposed to be.
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FSM Description

0 1
1 2,1 3,0

2 2,1 4,0

3 1,0 4,0

4 3,1 3,0

Input x
state 4

31

2

1/0

0/1

1/0

0/1

0/0

0/1,1/0

1/0

input 0 1 0
state 1 2 4
output 1 0 1

given

Entries: N,Z

Format: 
x/z

Based on FSM state table 

(or state diagram)



March 9, 2021 Fault Tolerant Computing
©Y.K. Malaiya

7

Stuck-at 0/1 Model 

• Classical model, well developed results/methods
– Many opens and shorts result in a node getting stuck-at 

a 0 or 1.  
• May not describe some defects in today’s VLSI.

– still a nice way of structural “probing”. Covering all 
stuck-at 0/1 will result in covering a large fraction of all 
faults.

• Model: any one or more of these may be stuck at 
0 or 1: a gate input, a gate output, a primary input.

• Justification: many lower level defects can be 
shown to have an equivalent effect.

Common abbreviations:

s-a-0, s-a-1
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Single Fault Assumption

• Assumption: only one fault is present at a time.
• Significantly reduces complexity.
• Good for fault detection: complete single stuck 

test set will detect almost all multiple faults.
• Not good for fault location.
• A Multiple fault is a simultaneous presence of 

several single faults. 
• How many multiple faults in a unit?

– Assume k lines
– 3 states per line: normal, s-a-0, s-a-1
– Total 3k-1 faulty situations!  (For k=1000, total 1.3x10477)

One among 3k situations 
is a normal unit.
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Test coverage

• A single test typically covers (i.e. tests) for 
several potential faults.

• The coverage obtained by a test-set can be 
obtained using fault simulators for hardware. 

• The test coverage achieved by a test-set is given 
by ratio:

Number of faults covered
coverage =      -------------------------------

Total number of possible faults
• By convention, coverage is evaluated for stuck-at 0/1 faults 

in hardware, often given in percentage.



March 9, 2021 Fault Tolerant Computing
©Y.K. Malaiya

10

Test generation: Some Basics (2)
• All tests are contained in T, where T = fÅfa

A

B

S-a-1 A 0 1

0 1 1
1 1 0

A 0 1

0 1 0
1 1 0

fa = B’f = (AB)’

T =   A’B  (01)  is a test. The only test.

B B

i.e.  T is the set of vectors for which normal and faulty outputs are different.  

A 0 1

0 0 1
1 0 0

fÅfa

B

fÅfa is 1 for combinations for 

which Karnaugh maps of f 
and fa are different.

Example:
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Boolean Difference: Internal Nodes

A
B

C

h
S-a-1

f(A,B,C)=AB+BC   h(A,B)=AB

fh(B,C,h)=h+BC 

dfh/dh =  fh(0,B,C)Åfh(1,B,C) = (BC) Å1
= BC  =B+C

T = h dfh/dh = (AB)(B+C) = (A+B)(B+C) = AB+AC+BC

=010, 011, 000, 100  (four vectors!)

00 01 11 10

0 1 0 1 1
1 1 0 0 0

BC
A
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D-Notation
• Notation: Line has value D if it is 1 normally and 0 

in presence of the fault. Line has value `D if it is 0 
normally and 1 in presence of the fault. 

1

1

s-a-0

D
D

s-a-1
0 D

D
1

Rules of error propagation:

D

0
D D

1
D

Gate All other 
inputs

AND, NAND 1
OR, NOR 0
XOR 0, 1
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Single Path Propagation
• Excitation: 

– h=0 normally. Need 
A,B=0,0

• Propagation:
– Other AND input:1
– Other OR input: 0

• Justification: 
– C=1 already. E=x (don’t 

care)
• Test is (0,0,1,x)

h S-a-1
A
B

C

E

D

D

Write on diagram

Single path propagation attempts to 

propagate error using a single path 
from the fault site to an output.
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Schneider’s Counterexample
• Try single path 2-6-8
• Excitation: D at 2: b,c=0,0
• Forward trace: 

– D at 6: d=0
– D at 8: 4,5,7=0,0,0

• Implication:
– Since b=d=0, 3=1, 7=0

• Line Justification (backward 
trace):  
– For 5=0: a=1
– Hence 1=0, 4=1 (!) 
– Inconsistency.

• Single path propagation fails.

a
c

b

b

c

b
d

c

1

2

3

4

5

6

7

8

a

dS-a-0

• Multiple path propagation thru 5 and 6 works!   
• b,c=0,0;   a,d=0,0  Thus (0,0,0,0) is a test.



March 9, 2021 Fault Tolerant Computing
©Y.K. Malaiya

15

D-Algorithm Ex (part 2)

Step 1 2 3 4 5 6 7 8 9

Initial 1 0 `D

5®8 1 0 `D 0 `D

8®9 1 0 `D 0 1 `D `D

4¬7 1 0 0 `D 0 1 `D `D

3¬6 1 0 1 0 `D 0 1 `D `D

1,2¬4 f 0 1 0 `D 0 1 `D `D

1

2

3

4

5

6

7

8

9
S-a-1

Try: path 5-8-9

Inconsistency!
Need to 

Backtrack

D-drive

Justifi-

cation

Table gives step-by-step values, until an

inconsistency is observed
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Fault Collapsing (2)

• Equivalence: Faults a and b are equivalent if fa= 
fb. Then a and b affect the output in exactly the 
same way.

All s-a-0 equivalent

All s-a-1 equivalent

•For an N-input gate only n+2 faults need to be 
considered 

•Ex: NAND gate: we only need to consider

•Any input s-a-0 or output s-a-1 (count as 1)
•One input s-a-1 (total n such inputs)

•Output s-a-0 (1)

•Termed Equivalence fault collapsing
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Fault Collapsing (2)

• Dominance: A fault a dominates fault 
b if TbÌTa.

• For detection only fault b needs to be 
considered. For location, both need 
to be considered separately (if 
distinguishable)

Ta

Tb

a s-a-1b s-a-1
x

x

Ta= 0xx, x0x, xx0
Tb= 011

\TbÌTa

(0,1,1) will test for both a and b. No 
need to use other tests if only detection 
is needed.

!

¾¾¾¾¾
Example: 

Detection only attempts to identify 

that the unit under test is faulty.
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Fault Collapsing: Check-points (2)

• Theorem: In a combinational circuit, any test set that 
detects all stuck faults on 
– all primary inputs and 
– All branches of fanout points
will detect all stuck faults in the network.

These are appropriately 
called Checkpoints

Incidentally a check-point 
concept is also applicable for 

software testing
H. Yin, Z. Lebne-Dengel and Y. K. Malaiya, “ 
Automatic Test Generation using Checkpoint 
Encoding and Antirandom Testing” Int. Symp. on 
Software Reliability Engineering, 1997, pp. 84-95.
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Checkpoints: 
Example

• 12 nodes,  two faults at each node (s-a-0, s-a-1)   
thus 24 faults before collapsing.

• Checkpoints are: 
– Primary inputs: a,b,c,d, e
– All branches of fan-out points: g,h 
– Faults at checkpoints 7x2=14 faults

• Thus only 14 out of 24 need to be considered.

a

b
c

d

e

f

g

h i

j

k

m
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Why Test Set Reduction works

Generally one pattern tests for several faults, because
• With a given vector, several nodes will be critical.

a

b

c
d

e

f

g
1c0c

1c

1c

10
0

(1100) will detect a s-a-0, b s-a-0, 
e s-a-1 and g s-a-0

Example:   Here the critical nodes are marked with a c. A node is critical 
only under a specific input vector, here (1,1,0,0).

A node is critical if a change in its logic value will change the output. 
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Test Set Compaction

• Minimize the number of patterns.
¾¾¾¾¾
Example: 

a

b
c

a-0 a-1 b-0 b-1 c-0 c-1
00 Ö

01 Ö Ö

10 Ö Ö

11 Ö Ö Ö

M
inim

um
 set

In practice heuristics are used, complete optimization is not needed.

faults
tests

Answer:  01, 10,11 will test for all the faults.  Thus no need to apply 00. 
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Fault 
distinction

• Preset test set: no decision making 
during testing

• Adaptive: successive narrowing down

Problem: There is one fault. Is it f1, f2 or f3? 

Fault Test t1 Test t2 Test t3

f1 tests doesn’t tests

f2 tests tests doesn’t

f3 doesn’t tests tests

•Preset approach: 
•Get response to t1,t2,t3

•Then Identify.

•Adaptive: Apply t1

No detection

\f3

Detection
Apply t3

Detection
f1

No det.

f2

Assuming equal probability 1/3 for each 
fault, average number  of tests 

to identify the fault= 2x 1/3+2x1/3+1 x1/3 = 
1.7  vectors!
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BIST (Built-in self-test)

• Generator generates 
pseudorandom vectors. Often an 
ALFSR.

• Signature analyzer compresses 
all successive responses into a 
signature. Usually an LFSR.

• Compared with known good 
signature.

• Aliasing probability: prob. that a 
bad circuit can result in good 
signature. Generally very small.

Generator

Signature analyzer

Combinational circuit

ALFSR: autonomous linear 
feedback shift register. 
Better generators include our 

antirandom test generator.
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Sequential Circuits with feedback: 
Scan-chain approach

• Design for testability: feedback-less during 
testing. The flip-flops can be configured to form 
scan-chains.

Comb.

Model control

Parallel in Parallel out

Serial out

Serial in

• Scan Design: modes
• Normal mode: parallel in/out
• Test mode: serial in/out

• Sequence of operations
• Scan a vector: test mode
• Latch response: normal mode
• Scan response out: test mode

• If scan-chain too long
• Use Multiple chain
• Use Partial scan 
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Incremental Testing Approach 
• Partition system into layers 

such that layer i can be exercised 
using only layers 0, .. i-1.

• Test components in each layer in 
the sequence L0, L1,..Ln.

• Layering may require
– Assumptions
– Disabling feedback during testing

• Proofs of complete coverage 
can be constructed.

• Fault isolation can be done.

Core 
L 0
Layer 1

Layer 2

D Brahme, JA Abraham, Functional 
Testing of Microprocessors, IEEE Trans 
Comp,  Jun 1984, pp. 475- 485.
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Distributions, Binomial Dist.

• Note that

• Major distributions: 
– Discrete: Bionomial, Poisson
– Continuous: Gaussian, expomential

• Binomial distribution: outcome is either success or failure
– Prob. of r successes in n trials, prob. of one success being p

1)(1)(
max

min

max

min
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Distributions: Poisson

• Poisson: also a discrete distribution, l is a parameter.

• Example:   µ = occurrence rate of something.
– Probability of r occurrences in time t is given by

!
)()(
r
etrf

tr µµ -

=

!
)(

x
exf
x ll -

=

Often applied to fault 

arrivals in a system 
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Exponential & Weibull Dist.
Exponential Distribution: is a 

continuous distribution.  
– Density function

f(t) = l e- l t           0<t£¥
Example:
• l: exit or failure rate.
• Pr{exit the good state during (t, t+dt)}

= e- lt l dt
• The time T spent in good state has 

an exponential distribution
• Weibull Distribution: is a 2-

parameter generalization of 
exponential distribution. Used when 
better fit is needed, but is more 
complex. 

l

State 
0

0

0 5 0 10 0 15 0

t i me

f(
t)

e- l t

1/ l

0. 37 l

l
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Poisson Process: properties

• Poisson process: A Markov counting process N(t),   
t ³ 0, N(t) is the number of arrivals up to time t.

• Properties  of a Poisson process:
– N(0) = 0
– P{an arrival in time Dt} = lDt
– No simultaneous arrivals

• We will next see an important example. Assuming 
that arrivals are occurring at rate l, we will calculate 
probability of n arrivals in time t.
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Poisson process: analysis
• A process is in state I, if I arrivals have occurred.
• Pi(t) is the probability the process is in state i.

• In state i, probability is flowing in from state i-1, and is 
flowing out to state i+1, in both cases governed by the rate l. 
Thus

l l l l

…0 1 i

i arrivals

,..1,0)()(
)(

1 =+-= - ntPtP
dt
tdP

ii
i ll

We’ll solve it first for P0(t),

then for P1(t), then …
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Poisson Process: General solution

,..1,0
!
)()(

,

== - ne
n
ttP

getweyrecursivelSolving

t
n

n
ll

We need to solve
,..1,0)()(

)(
1 =+-= - ntPtP

dt
tdP

ii
i ll

Using the expression for  P0(t), we can solve it for P1(t).

Which we know is 

Poisson distribution!



3/9/21 FTC  YKM 32

Coverage Achieved

0.975

0.274

Cr L( )

161 L
0 5 10 15 20

0

0.25

0.5

0.75

1

vectors

ex
pe

xt
ed
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ov

er
ag

e

Ex: Circuit with higher 
h1 would be harder to 

test.
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Coverage with L random vectors
• hk out of M defects detectable by exactly k vectors:  

detection probability k/N
• P{a defect with dp k/N not detected by a vector} =

• P{a defect with dp k/N not detected by L vectors} =

• Of hk faults, expected number not covered is
• Expected test coverage with L vectors

 )1(1C(L)
1
å
=

--=
N

k

kL

M
h

N
k

)1(
N
k

-

L

N
k )1( -

k
L h

N
k )1( -
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Detectability Profile: Software

• Software detectability 
profile is exponential 

• Justification: Early testing 
will find & remove easy-to-
test faults.

• Testing methods need to 
focus on hard-to-find 
faults.

0

0 .2

0 .4

0 .6

0 .8

1

1 .2

0 5 10 15 20

k

Hard to test Low hanging fruit
As testing time progresses, more of 
the faults are clustered to the left.
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Implications: Fault Seeding

• A program has x defects. We want to 
estimate x.

• Seed j new faults.
• Do some testing. Let faults found be j1

seeded faults and x1 original faults.
• Assuming j1/j =  x1/x  we get  

• However, in reality the x faults include 
harder faults to test, 

1
1 j
jxx =

1

111

j
jxxhence

x
x

j
j

>>
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Mean Time to Failure (MTTF)
• There is a very useful general relation between MTTF and R(t). 

Here T is time to failure, which is a random variable.

dttRMTTFThus

dttRtRt

dt
dt
tdRt

dttftTEMTTF
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Worth 
Remembering!
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Failures with Repair
• Time between failures: time to repair + time to next failure

good bad

“failure”

“repair”

operational operational

Under repair Under repair

TTF
TBF

• MTBF = MTTF + MTTR
• MTBF, MTTF are same same when MTTR »0

• Steady state availability = MTTF / (MTTF+MTTR)



March 9, 2021 Fault Tolerant Computing
©Y.K. Malaiya

38

Mission Time (High-Reliability Systems)

• Reliability throughout the mission 
must remain above a threshold 
reliability Rth.

• Mission time TM: defined as the 
duration in which R(t)³Rth.

• Rth may be chosen to be perhaps 
0.95.

• Mission time is a strict measure, 
used only for very high reliability 
missions. 

0

0.25

0.5

0.75

1

0 20 40 60

time
R
(t
)

Rth

TM
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Basic Cases: Single Unit with 
Permanent Failure

• Failure rate is the probability of failure/unit time
• Assumption: constant failure-rate l

Good

0

Bad

1

Z(t)=l

condition initial1)0(
0 statein  being ofy probabiliton 

 depends 0 state leaving of rate  thesince)(
)(

0

0
0

=

-=

p

tp
dt
tdp

l

The state transition diagram & 

the differential equation represent
What we call Markov Modeling.
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Single Unit with Permanent Failure (2)

368.0)(,1
" lawy  reliabilitlExponentia The"
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etpSolution

p

tp
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t

t

l

l

l

l
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e-l t

1/l

0 .37
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Single Unit: Permanent Failure (3)

• Ex 1: a unit has MTTF 
=30,000 hrs. Find failure rate.
l=1/30,000=3.3x10-5/hr

• Ex 2: Compute mission time TM
if Rth =0.95.
e-lTM =0.95   TM= - ln(0.95)/ l

»0.051/ l
• Ex 3: Assume l=3.33x10-5,  and

Rth =0.95 find TM.

Ans: TM = 1538.8 hrs
(compare with MTTF =30,000)
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Single Unit: Temporary Failures(1)
• Temporary: intermittent, transient, permanent with repair

good
bad

Good

0

Bad

1

l

µ

  (t).p-1  (t)p since needednot  
isit however  (t),pfor  expressionan get can  weSimilarly 

)1()0()(

etc.  transformlaplaceby  solved becan 

)()()(

)()(
)(

01

1

)()(
00

10
1

10
0

=

-
+

+=

-+=

+-=

+-+- tt eeptp

tptp
dt
tdp

tptp
dt
tdp

µlµl

µl
µ

µl

µl

Y. K. Malaiya, S. Y. H. Su: Reliability 
Measure of Hardware Redundancy 
Fault-Tolerant Digital Systems with 
Intermittent Faults. IEEE Trans. 
Computers 30(8): 600-604 (1981) 

Note state diagram &
Differential equations for 
Markov modeling
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Single Unit: Temporary Failures(2)
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Series configuration
Series configuration: all units are essential. System fails if one of them 

fails .

• Assumption: statistically independent failures in units.

U1 U2 U3

Õ
=

=

=
=
=

n
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S
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1
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Series configuration

n
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t
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i
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:rates failure individual of sum  theis rate failure system i.e.
)(Rthen 

)(R If
21

U1 U2 U3

This gives us a nice way to estimate the overall failure rate, when all 
the  individual units are essential. This is the basis of the approach 
used in the popular “Military Handbook” MIL-HDBK-217 approach for 
estimating the failure rates for different systems. 

The failure rates of individual units are estimated using empirical 
formulas. For example the failure rate of a VLSI chip is related to its 
complexity etc.

The reliability block 
diagrams like  this are only 
conceptual, not physical.
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Combinatorial:  Parallel
• Parallel configuration: System is good when least one of the 

several replicated units is good. A parallel configuration 
represents an ideal redundant system, ignoring any overhead.
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Combinatorial: Parallel

Where `R  represents 
1-R, i.e. “unreliability”
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Triple Modular Redundancy

• Popular high-reliability 
scheme: 2-out-of-3 system

• Output is obtained using a 
majority voter
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Where R is the reliability of a 
single module. This assumes 
that the voter is perfect, a 
reasonable assumption if the 
voter complexity is much less 
than an individual module.
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Triple Modular Redundancy
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Here is a plot of the system reliability, when 
the individual module reliability varies 
between 0 to 1.

Note that if the reliability of an individual 
module is  less than 0.5, it is more likely to 
be bad. Having several such modules, and 
taking majority vote, will actually make the 
system less reliable, as you see in the figure.

A political application of the principle: majority-
based democracy works only if the individuals 
are more likely to make the right decision than 
wrong!
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TMR: Permanent Failures
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Thus TMR has a lower MTTF than a single module!

MTTF may not be a good 
measure when very high 
reliability levels are maintained.
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Imperfect Coverage: Example
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Two parallel modules

Note that better  coverage 
improves the reliability. When 
coverage =1, full potential of the 
parallel configuration is achieved. 
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TMR+Spares
• TMR core, n-3 spares (assume same failure 

rate)
• Scheme A: System failure when all but one 

modules have failed. If we start with 3 in the 
core and 2 spares, the sequence will be 

3+2 ® 3+1 ® 3+0 ® 2+0 ® failure
• Reliability of the system then is 

Rs=Rsw[1-nR(1-R)n-1-(1-R)n]
Where R is reliability of a single module and 
Rsw is the reliability of the switching circuit 
overhead.

• Rsw should depend on total number of modules 
n, and relative complexity of the switching 
logic.

• Let us assume that Rsw=(Ra)n,
where a is measure of relative complexity, 
generally a <<1. Then

• Rs=Ran [1-nR(1-R)n-1-(1-R)n]

Switching 

circuit

Disagreement

detector

vTMR

core

spares
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Why is Defect Density Important?

• Important measurement of reliability
• Often used as release criteria.
• Typical values of defect density /1000 LOC mentioned in literature:

• Long term trend: tolerable defect density limits have been gradually dropping, i.e. 
reliability expectations have risen.

 On Release Beginning  
Of Unit 
Testing Frequently 

Cited in 
literature 

Highly 
Tested 
programs 

NASA 
Space 
Shuttle 
Software 

16 2.0 0.33 0.1 
 

 

Note: NASA space shuttle controversy: see 
appendix.
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A Static Defect Density Model
• Li, Malaiya, Denton (93, 97)

D=C.Fph.Fpt.Fm.Fs.Frv
• C is a constant of proportionality, 

based on prior data, used for 
calibration.

• Default value of each function  Fi
(submodel) is 1.

• Each function Fi is a function of 
some measure of the attribute.

Possible factors

Phase

Programming Team

Process Maturity

Structure

Requirement Volatility



Reuse factor: A simple analysis

• u: fraction of software reused
• dr, dn: defect density of reused software, defect 

density of new software,   dr < dn
• Total defects = [u. dr+(1-u). dn]S

Where S is software size

• If there was no  reuse, defects would be dnS
• Normalizing, 

– Reuse factor Fr(u, dr/dn)=[u. dr / dn +(1-u)]
– Fr is 1 if there is no reuse, <1 if reuse.

3/9/21 54
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Static Model: Example
D = C.Fph.Fpt.Fm.Fs.Frv

•For an organization, C is between 12 and 16. The team has average 
skills and SEI maturity level is II. About 20% of code in assembly. 

Other factors are average (or same as past projects).

Estimate defect density at beginning of subsystem test 
phase.

•Upper estimate=16´2.5´1´1´(1+0.4 ´0.20)´1=43.2/KSLOC

•Lower estimate= 12´2.5´1´1´(1+0.4´0.20)´1=32.4/KLOC

Here the structure factor is 1+0.4´0.20 because of some assembly 
code. Factor 2.5 is for the beginning of the subsystem phase.
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Exponential SRGM Derivation Pt 1
§ Notation

• Ts: average single execution time
• ks: expected fraction of faults found during Ts
• TL: time to execute each program instruction once

ratio exposurefault  is K where

)()()(

)()(
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L
s

L

ss

T
Tk

tNtN
T
K

dt
tdN

tNkT
dt
tdN

=

==-

=-

b
Notation: Here we replace 
Ks and Ts by more 
convenient K and TL.

Key 
assumption
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Exponential SRGM Derivation Pt 2
• We get

• For t®¥, total bo=N(0) faults would be eventually
detected. A “finite-faults-model”.

• Assumes no new defects are generated during
debugging.

• Proposed by Jelinski-Muranda ‘71, Shooman ‘71,
Goel-Okumoto ‘79 and Musa ‘75-’80. also called
Basic.

e)N( = N(t) t- 1b0

)e - (1 = (t) t-
o

1bbµ e  = (t) t-
1o

1bbbl
The 2 equations 

contain the 
same 

information.
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A Basic SRGM (cont.)
• Note that parameter b1 is given by:

• S: source instructions,
• Q: number of object instructions per source instruction

typically between 2.5 to 6 (see page 7-13 of Software
rteliability Handbook, sec 7)

• r: object instruction execution rate of the computer
• K: fault-exposure ratio, range 1×10-7 to 10×10-7, (t is in

CPU seconds). Assumed constant here*.
• Q, r and K should be relatively easy to estimate.

)
r

Q(S

K
T
K = 

L
1 1..

=b

*Y. K. Malaiya, A. von Mayrhauser and P. K. Srimani, "An examination of fault exposure ratio,“
in IEEE Transactions on Software Engineering, vol. 19, no. 11, pp. 1087-1094, Nov 1993

http://www.cs.colostate.edu/~cs530/rh/section7.pdf
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SRGM : “Logarithmic Poisson”
• Many SRGMs have been proposed.
• Another model Logarithmic Poisson model, by Musa-

Okumoto, has been found to have a good predictive
capability

• Applicable as long as µ(t) < N(0). Practically always
satisfied. Term infinite-faults-model misleading.

• Parameters bo and b1 don’t have a simple interpretation.
An interpretation has been given by Malaiya and Denton (What Do the Software
Reliability Growth Model Parameters Represent?).

t) + (1  = (t) 1o bbµ ln
t + 1

 = (t)
1

1o

b
bb

l

http://www.cs.colostate.edu/~malaiya/p/denton97.pdf
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Example: SRGM with Test Data (cont.)
Figure 1: Using an SRGM
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