
March 9, 2021 1

Fault Tolerant Computing
CS 530

Midterm Review

Yashwant K. Malaiya
Colorado State University

3/9/21 2

Fault Tolerant Computing:
Midterm Review

Midterm:
• Sec 001 Th Mar 11, 3:30-4:45 PM

– Also for Sec 801 Local students, not working full time
• Sec 801 distance students Mar 11 3:30-Mar 12 4:45PM
• Respondus Lockdown browser

– Closed book/notes
– Built-in Scientific calculator in browser
– One blank sheet permitted

• Show both side at the beginning and at the end
• Destroy on camera

• Formula sheet? No.

3/9/21 3

How to prepare for the Midterm

• Attentively attend lectures
– linking concepts and methods critically

• Quizzes. Find out why.
• PSA1: Ask why.
• You should be able

– Solve similar and related problems.
– Explain why.
– Apply principles to solve new problems.

3/9/21 4

Topics

• Terminology and ideas
• Digital Systems, Fault Modeling
• Combinational & Sequential Circuit Testing
• Probabilistic Methods
• Random Testing
• Reliability: combinatorial and time dependent
• Software Reliability:

– Static modeling, Module size, SRGM

March 9, 2021 Fault Tolerant Computing
©Y.K. Malaiya

5

Combinational Example

x1 x2 x3 f
0 0 0 0
0 0 1 0
0 1 0 1
0 1 1 1
1 0 0 1
1 0 1 0
1 1 0 1
1 1 1 0

00 01 11 10

0 0 0 1 1
1 1 0 0 1

x2x3
x
1

x3

x2

Implementation A

F=x1’x2 + x1x3’

Implementation B
F=x1’x2 + x1x3’ + x2x3’

X1’

x2

x1

X3’

X1’

X3’
x2

X3’

x2

x1

f

f

xStuck-at-0

untestable

redundantNote that the x2x3’ term is redundant.
Here a prime indicates complement. A stuck-at-0 fault makes the line always stay at 0

regardless of what it is supposed to be.

March 9, 2021 Fault Tolerant Computing
©Y.K. Malaiya

6

FSM Description

0 1
1 2,1 3,0

2 2,1 4,0

3 1,0 4,0

4 3,1 3,0

Input x
state 4

31

2

1/0

0/1

1/0

0/1

0/0

0/1,1/0

1/0

input 0 1 0
state 1 2 4
output 1 0 1

given

Entries: N,Z

Format:
x/z

Based on FSM state table

(or state diagram)

March 9, 2021 Fault Tolerant Computing
©Y.K. Malaiya

7

Stuck-at 0/1 Model

• Classical model, well developed results/methods
– Many opens and shorts result in a node getting stuck-at

a 0 or 1.
• May not describe some defects in today’s VLSI.

– still a nice way of structural “probing”. Covering all
stuck-at 0/1 will result in covering a large fraction of all
faults.

• Model: any one or more of these may be stuck at
0 or 1: a gate input, a gate output, a primary input.

• Justification: many lower level defects can be
shown to have an equivalent effect.

Common abbreviations:

s-a-0, s-a-1

March 9, 2021 Fault Tolerant Computing
©Y.K. Malaiya

8

Single Fault Assumption

• Assumption: only one fault is present at a time.
• Significantly reduces complexity.
• Good for fault detection: complete single stuck

test set will detect almost all multiple faults.
• Not good for fault location.
• A Multiple fault is a simultaneous presence of

several single faults.
• How many multiple faults in a unit?

– Assume k lines
– 3 states per line: normal, s-a-0, s-a-1
– Total 3k-1 faulty situations! (For k=1000, total 1.3x10477)

One among 3k situations
is a normal unit.

March 9, 2021 Fault Tolerant Computing
©Y.K. Malaiya

9

Test coverage

• A single test typically covers (i.e. tests) for
several potential faults.

• The coverage obtained by a test-set can be
obtained using fault simulators for hardware.

• The test coverage achieved by a test-set is given
by ratio:

Number of faults covered
coverage = -------------------------------

Total number of possible faults
• By convention, coverage is evaluated for stuck-at 0/1 faults

in hardware, often given in percentage.

March 9, 2021 Fault Tolerant Computing
©Y.K. Malaiya

10

Test generation: Some Basics (2)
• All tests are contained in T, where T = fÅfa

A

B

S-a-1 A 0 1

0 1 1
1 1 0

A 0 1

0 1 0
1 1 0

fa = B’f = (AB)’

T = A’B (01) is a test. The only test.

B B

i.e. T is the set of vectors for which normal and faulty outputs are different.

A 0 1

0 0 1
1 0 0

fÅfa

B

fÅfa is 1 for combinations for

which Karnaugh maps of f
and fa are different.

Example:

March 9, 2021 Fault Tolerant Computing
©Y.K. Malaiya

11

Boolean Difference: Internal Nodes

A
B

C

h
S-a-1

f(A,B,C)=AB+BC h(A,B)=AB

fh(B,C,h)=h+BC

dfh/dh = fh(0,B,C)Åfh(1,B,C) = (BC) Å1
= BC =B+C

T = h dfh/dh = (AB)(B+C) = (A+B)(B+C) = AB+AC+BC

=010, 011, 000, 100 (four vectors!)

00 01 11 10

0 1 0 1 1
1 1 0 0 0

BC
A

March 9, 2021 Fault Tolerant Computing
©Y.K. Malaiya

12

D-Notation
• Notation: Line has value D if it is 1 normally and 0

in presence of the fault. Line has value `D if it is 0
normally and 1 in presence of the fault.

1

1

s-a-0

D
D

s-a-1
0 D

D
1

Rules of error propagation:

D

0
D D

1
D

Gate All other
inputs

AND, NAND 1
OR, NOR 0
XOR 0, 1

March 9, 2021 Fault Tolerant Computing
©Y.K. Malaiya

13

Single Path Propagation
• Excitation:

– h=0 normally. Need
A,B=0,0

• Propagation:
– Other AND input:1
– Other OR input: 0

• Justification:
– C=1 already. E=x (don’t

care)
• Test is (0,0,1,x)

h S-a-1
A
B

C

E

D

D

Write on diagram

Single path propagation attempts to

propagate error using a single path
from the fault site to an output.

March 9, 2021 Fault Tolerant Computing
©Y.K. Malaiya

14

Schneider’s Counterexample
• Try single path 2-6-8
• Excitation: D at 2: b,c=0,0
• Forward trace:

– D at 6: d=0
– D at 8: 4,5,7=0,0,0

• Implication:
– Since b=d=0, 3=1, 7=0

• Line Justification (backward
trace):
– For 5=0: a=1
– Hence 1=0, 4=1 (!)
– Inconsistency.

• Single path propagation fails.

a
c

b

b

c

b
d

c

1

2

3

4

5

6

7

8

a

dS-a-0

• Multiple path propagation thru 5 and 6 works!
• b,c=0,0; a,d=0,0 Thus (0,0,0,0) is a test.

March 9, 2021 Fault Tolerant Computing
©Y.K. Malaiya

15

D-Algorithm Ex (part 2)

Step 1 2 3 4 5 6 7 8 9

Initial 1 0 `D

5®8 1 0 `D 0 `D

8®9 1 0 `D 0 1 `D `D

4¬7 1 0 0 `D 0 1 `D `D

3¬6 1 0 1 0 `D 0 1 `D `D

1,2¬4 f 0 1 0 `D 0 1 `D `D

1

2

3

4

5

6

7

8

9
S-a-1

Try: path 5-8-9

Inconsistency!
Need to

Backtrack

D-drive

Justifi-

cation

Table gives step-by-step values, until an

inconsistency is observed

March 9, 2021 Fault Tolerant Computing
©Y.K. Malaiya

16

Fault Collapsing (2)

• Equivalence: Faults a and b are equivalent if fa=
fb. Then a and b affect the output in exactly the
same way.

All s-a-0 equivalent

All s-a-1 equivalent

•For an N-input gate only n+2 faults need to be
considered

•Ex: NAND gate: we only need to consider

•Any input s-a-0 or output s-a-1 (count as 1)
•One input s-a-1 (total n such inputs)

•Output s-a-0 (1)

•Termed Equivalence fault collapsing

March 9, 2021 Fault Tolerant Computing
©Y.K. Malaiya

17

Fault Collapsing (2)

• Dominance: A fault a dominates fault
b if TbÌTa.

• For detection only fault b needs to be
considered. For location, both need
to be considered separately (if
distinguishable)

Ta

Tb

a s-a-1b s-a-1
x

x

Ta= 0xx, x0x, xx0
Tb= 011

\TbÌTa

(0,1,1) will test for both a and b. No
need to use other tests if only detection
is needed.

!

¾¾¾¾¾
Example:

Detection only attempts to identify

that the unit under test is faulty.

March 9, 2021 Fault Tolerant Computing
©Y.K. Malaiya

18

Fault Collapsing: Check-points (2)

• Theorem: In a combinational circuit, any test set that
detects all stuck faults on
– all primary inputs and
– All branches of fanout points
will detect all stuck faults in the network.

These are appropriately
called Checkpoints

Incidentally a check-point
concept is also applicable for

software testing
H. Yin, Z. Lebne-Dengel and Y. K. Malaiya, “
Automatic Test Generation using Checkpoint
Encoding and Antirandom Testing” Int. Symp. on
Software Reliability Engineering, 1997, pp. 84-95.

March 9, 2021 Fault Tolerant Computing
©Y.K. Malaiya

19

Checkpoints:
Example

• 12 nodes, two faults at each node (s-a-0, s-a-1)
thus 24 faults before collapsing.

• Checkpoints are:
– Primary inputs: a,b,c,d, e
– All branches of fan-out points: g,h
– Faults at checkpoints 7x2=14 faults

• Thus only 14 out of 24 need to be considered.

a

b
c

d

e

f

g

h i

j

k

m

March 9, 2021 Fault Tolerant Computing
©Y.K. Malaiya

20

Why Test Set Reduction works

Generally one pattern tests for several faults, because
• With a given vector, several nodes will be critical.

a

b

c
d

e

f

g
1c0c

1c

1c

10
0

(1100) will detect a s-a-0, b s-a-0,
e s-a-1 and g s-a-0

Example: Here the critical nodes are marked with a c. A node is critical
only under a specific input vector, here (1,1,0,0).

A node is critical if a change in its logic value will change the output.

March 9, 2021 Fault Tolerant Computing
©Y.K. Malaiya

21

Test Set Compaction

• Minimize the number of patterns.
¾¾¾¾¾
Example:

a

b
c

a-0 a-1 b-0 b-1 c-0 c-1
00 Ö

01 Ö Ö

10 Ö Ö

11 Ö Ö Ö

M
inim

um
 set

In practice heuristics are used, complete optimization is not needed.

faults
tests

Answer: 01, 10,11 will test for all the faults. Thus no need to apply 00.

March 9, 2021 Fault Tolerant Computing
©Y.K. Malaiya

22

Fault
distinction

• Preset test set: no decision making
during testing

• Adaptive: successive narrowing down

Problem: There is one fault. Is it f1, f2 or f3?

Fault Test t1 Test t2 Test t3

f1 tests doesn’t tests

f2 tests tests doesn’t

f3 doesn’t tests tests

•Preset approach:
•Get response to t1,t2,t3

•Then Identify.

•Adaptive: Apply t1

No detection

\f3

Detection
Apply t3

Detection
f1

No det.

f2

Assuming equal probability 1/3 for each
fault, average number of tests

to identify the fault= 2x 1/3+2x1/3+1 x1/3 =
1.7 vectors!

March 9, 2021 Fault Tolerant Computing
©Y.K. Malaiya

23

BIST (Built-in self-test)

• Generator generates
pseudorandom vectors. Often an
ALFSR.

• Signature analyzer compresses
all successive responses into a
signature. Usually an LFSR.

• Compared with known good
signature.

• Aliasing probability: prob. that a
bad circuit can result in good
signature. Generally very small.

Generator

Signature analyzer

Combinational circuit

ALFSR: autonomous linear
feedback shift register.
Better generators include our

antirandom test generator.

March 9, 2021 Fault Tolerant Computing
©Y.K. Malaiya

24

Sequential Circuits with feedback:
Scan-chain approach

• Design for testability: feedback-less during
testing. The flip-flops can be configured to form
scan-chains.

Comb.

Model control

Parallel in Parallel out

Serial out

Serial in

• Scan Design: modes
• Normal mode: parallel in/out
• Test mode: serial in/out

• Sequence of operations
• Scan a vector: test mode
• Latch response: normal mode
• Scan response out: test mode

• If scan-chain too long
• Use Multiple chain
• Use Partial scan

March 9, 2021 Fault Tolerant Computing
©Y.K. Malaiya

25

Incremental Testing Approach
• Partition system into layers

such that layer i can be exercised
using only layers 0, .. i-1.

• Test components in each layer in
the sequence L0, L1,..Ln.

• Layering may require
– Assumptions
– Disabling feedback during testing

• Proofs of complete coverage
can be constructed.

• Fault isolation can be done.

Core
L 0
Layer 1

Layer 2

D Brahme, JA Abraham, Functional
Testing of Microprocessors, IEEE Trans
Comp, Jun 1984, pp. 475- 485.

March 9, 2021 Fault Tolerant Computing
©Y.K. Malaiya

26

Distributions, Binomial Dist.

• Note that

• Major distributions:
– Discrete: Bionomial, Poisson
– Continuous: Gaussian, expomential

• Binomial distribution: outcome is either success or failure
– Prob. of r successes in n trials, prob. of one success being p

1)(1)(
max

min

max

min

== åò
i

i
i

x

x

xpdxxf

nrforpp
r

n
rf rnr ,,0)1()(!=-÷

÷
ø

ö
ç
ç
è

æ
= -

)!(!
!
rnr

nC
r
n

r
n

-
==÷÷

ø

ö
çç
è

æincidentally

March 9, 2021 Fault Tolerant Computing
©Y.K. Malaiya

27

Distributions: Poisson

• Poisson: also a discrete distribution, l is a parameter.

• Example: µ = occurrence rate of something.
– Probability of r occurrences in time t is given by

!
)()(
r
etrf

tr µµ -

=

!
)(

x
exf
x ll -

=

Often applied to fault

arrivals in a system

March 9, 2021 Fault Tolerant Computing
©Y.K. Malaiya

28

Exponential & Weibull Dist.
Exponential Distribution: is a

continuous distribution.
– Density function

f(t) = l e- l t 0<t£¥
Example:
• l: exit or failure rate.
• Pr{exit the good state during (t, t+dt)}

= e- lt l dt
• The time T spent in good state has

an exponential distribution
• Weibull Distribution: is a 2-

parameter generalization of
exponential distribution. Used when
better fit is needed, but is more
complex.

l

State
0

0

0 5 0 10 0 15 0

t i me

f(
t)

e- l t

1/ l

0. 37 l

l

March 9, 2021 Fault Tolerant Computing
©Y.K. Malaiya

29

Poisson Process: properties

• Poisson process: A Markov counting process N(t),
t ³ 0, N(t) is the number of arrivals up to time t.

• Properties of a Poisson process:
– N(0) = 0
– P{an arrival in time Dt} = lDt
– No simultaneous arrivals

• We will next see an important example. Assuming
that arrivals are occurring at rate l, we will calculate
probability of n arrivals in time t.

March 9, 2021 Fault Tolerant Computing
©Y.K. Malaiya

30

Poisson process: analysis
• A process is in state I, if I arrivals have occurred.
• Pi(t) is the probability the process is in state i.

• In state i, probability is flowing in from state i-1, and is
flowing out to state i+1, in both cases governed by the rate l.
Thus

l l l l

…0 1 i

i arrivals

,..1,0)()(
)(

1 =+-= - ntPtP
dt
tdP

ii
i ll

We’ll solve it first for P0(t),

then for P1(t), then …

March 9, 2021 Fault Tolerant Computing
©Y.K. Malaiya

31

Poisson Process: General solution

,..1,0
!
)()(

,

== - ne
n
ttP

getweyrecursivelSolving

t
n

n
ll

We need to solve
,..1,0)()(

)(
1 =+-= - ntPtP

dt
tdP

ii
i ll

Using the expression for P0(t), we can solve it for P1(t).

Which we know is

Poisson distribution!

3/9/21 FTC YKM 32

Coverage Achieved

0.975

0.274

Cr L()

161 L
0 5 10 15 20

0

0.25

0.5

0.75

1

vectors

ex
pe

xt
ed

 c
ov

er
ag

e

Ex: Circuit with higher
h1 would be harder to

test.

3/9/21 FTC YKM 33

Coverage with L random vectors
• hk out of M defects detectable by exactly k vectors:

detection probability k/N
• P{a defect with dp k/N not detected by a vector} =

• P{a defect with dp k/N not detected by L vectors} =

• Of hk faults, expected number not covered is
• Expected test coverage with L vectors

)1(1C(L)
1
å
=

--=
N

k

kL

M
h

N
k

)1(
N
k

-

L

N
k)1(-

k
L h

N
k)1(-

3/9/21 FTC YKM 34

Detectability Profile: Software

• Software detectability
profile is exponential

• Justification: Early testing
will find & remove easy-to-
test faults.

• Testing methods need to
focus on hard-to-find
faults.

0

0 .2

0 .4

0 .6

0 .8

1

1 .2

0 5 10 15 20

k

Hard to test Low hanging fruit
As testing time progresses, more of
the faults are clustered to the left.

3/9/21 FTC YKM 35

Implications: Fault Seeding

• A program has x defects. We want to
estimate x.

• Seed j new faults.
• Do some testing. Let faults found be j1

seeded faults and x1 original faults.
• Assuming j1/j = x1/x we get

• However, in reality the x faults include
harder faults to test,

1
1 j
jxx =

1

111

j
jxxhence

x
x

j
j

>>

March 9, 2021 Fault Tolerant Computing
©Y.K. Malaiya

36

Mean Time to Failure (MTTF)
• There is a very useful general relation between MTTF and R(t).

Here T is time to failure, which is a random variable.

dttRMTTFThus

dttRtRt

dt
dt
tdRt

dttftTEMTTF

ò

ò

ò

ò

¥

¥
¥

¥

¥

=

+-=

-=

==

0

0
0

0

0

)(

)()]([

)(

)()(

dt
tdRtfor

dt
tdR

dt
tdF

tF
tTP

tinfailurePtR
Note

)()(

)()(
)(1

}0{1
)},0({1)(

:

-=

-=\

-=
££-=

-=

.0)(Thus
 form theofgenerally is R(t) and

0
:

¥®®

¥®®
-

-

tasttR
e

xasxe
Note

at

x

Worth
Remembering!

March 9, 2021 Fault Tolerant Computing
©Y.K. Malaiya

37

Failures with Repair
• Time between failures: time to repair + time to next failure

good bad

“failure”

“repair”

operational operational

Under repair Under repair

TTF
TBF

• MTBF = MTTF + MTTR
• MTBF, MTTF are same same when MTTR »0

• Steady state availability = MTTF / (MTTF+MTTR)

March 9, 2021 Fault Tolerant Computing
©Y.K. Malaiya

38

Mission Time (High-Reliability Systems)

• Reliability throughout the mission
must remain above a threshold
reliability Rth.

• Mission time TM: defined as the
duration in which R(t)³Rth.

• Rth may be chosen to be perhaps
0.95.

• Mission time is a strict measure,
used only for very high reliability
missions.

0

0.25

0.5

0.75

1

0 20 40 60

time
R
(t
)

Rth

TM

March 9, 2021 Fault Tolerant Computing
©Y.K. Malaiya

39

Basic Cases: Single Unit with
Permanent Failure

• Failure rate is the probability of failure/unit time
• Assumption: constant failure-rate l

Good

0

Bad

1

Z(t)=l

condition initial1)0(
0 statein being ofy probabiliton

 depends 0 state leaving of rate thesince)(
)(

0

0
0

=

-=

p

tp
dt
tdp

l

The state transition diagram &

the differential equation represent
What we call Markov Modeling.

March 9, 2021 Fault Tolerant Computing
©Y.K. Malaiya

40

Single Unit with Permanent Failure (2)

368.0)(,1
" lawy reliabilitlExponentia The"

)(
)()(

)(:
1)0(

)(
)(

1

0

0

0

0
0

===

=

=
=

=

-=

-

-

-

etRtAt

etR
tptRSince
etpSolution

p

tp
dt
tdp

t

t

l

l

l

l

0

0 .25

0 .5

0 .75

1

0 50 100 150

time

R
(t)

e-l t

1/l

0 .37

March 9, 2021 Fault Tolerant Computing
©Y.K. Malaiya

41

Single Unit: Permanent Failure (3)

• Ex 1: a unit has MTTF
=30,000 hrs. Find failure rate.
l=1/30,000=3.3x10-5/hr

• Ex 2: Compute mission time TM
if Rth =0.95.
e-lTM =0.95 TM= - ln(0.95)/ l

»0.051/ l
• Ex 3: Assume l=3.33x10-5, and

Rth =0.95 find TM.

Ans: TM = 1538.8 hrs
(compare with MTTF =30,000)

tetR l-=)(

l

l

l

l

1

][

)(

.)()(

0

00

=

-=

==

¥
-

¥
-

¥

òò
t

t

e

dtedttRMTTF

casethisintRassameistA

March 9, 2021 Fault Tolerant Computing
©Y.K. Malaiya

42

Single Unit: Temporary Failures(1)
• Temporary: intermittent, transient, permanent with repair

good
bad

Good

0

Bad

1

l

µ

 (t).p-1 (t)p since needednot
isit however (t),pfor expressionan get can weSimilarly

)1()0()(

etc. transformlaplaceby solved becan

)()()(

)()(
)(

01

1

)()(
00

10
1

10
0

=

-
+

+=

-+=

+-=

+-+- tt eeptp

tptp
dt
tdp

tptp
dt
tdp

µlµl

µl
µ

µl

µl

Y. K. Malaiya, S. Y. H. Su: Reliability
Measure of Hardware Redundancy
Fault-Tolerant Digital Systems with
Intermittent Faults. IEEE Trans.
Computers 30(8): 600-604 (1981)

Note state diagram &
Differential equations for
Markov modeling

March 9, 2021 Fault Tolerant Computing
©Y.K. Malaiya

43

Single Unit: Temporary Failures(2)

µl
µ

µl
l

µl
µ

µl
µ

µl
µ

µlµl

µlµl

+
•

+
=

+
=¥®

-•

-
+

+=

=•

-
+

+=•

+-+-

+-+-

 isty availabili state-Steady

)()(,t

:exist iesprobabilit statesteady that Note

)1()0(Thus

)(A(t)ty Availabili

)1()0()(

10

)()(
0

0

)()(
00

tptp

eepA(t)

tp

eeptp

tt

tt

March 9, 2021 Fault Tolerant Computing
©Y.K. Malaiya

44

Series configuration
Series configuration: all units are essential. System fails if one of them

fails .

• Assumption: statistically independent failures in units.

U1 U2 U3

Õ
=

=

=
=
=

n

i
iS

S

RR

RRR
gUPgUPgUP

goodUgoodUgoodUPR

1

321

321

321

 general In

}{}{}{
}{ !!

March 9, 2021 Fault Tolerant Computing
©Y.K. Malaiya

45

Series configuration

n

tt

t

ni

i

eet

et

llll

llll

l

+++=

=P=

=
+++--

-

!

!

21S

][
s

i

:rates failure individual of sum theis rate failure system i.e.
)(Rthen

)(R If
21

U1 U2 U3

This gives us a nice way to estimate the overall failure rate, when all
the individual units are essential. This is the basis of the approach
used in the popular “Military Handbook” MIL-HDBK-217 approach for
estimating the failure rates for different systems.

The failure rates of individual units are estimated using empirical
formulas. For example the failure rate of a VLSI chip is related to its
complexity etc.

The reliability block
diagrams like this are only
conceptual, not physical.

March 9, 2021 Fault Tolerant Computing
©Y.K. Malaiya

46

Combinatorial: Parallel
• Parallel configuration: System is good when least one of the

several replicated units is good. A parallel configuration
represents an ideal redundant system, ignoring any overhead.

U1

U2

U3

Õ

Õ

=

=

=

--=

----=
-=
-=
-=

n

i
is

i

n

i
s

s

RRei

RR

RRR
bUPbUPbUP
badUbadUbadUP

badunitsallPR

1

1

321

321

321

..

)1(1 general In

)1)(1)(1(1
.}{.}{.}{1

}{1
}{1
!!

Combinatorial: Parallel

Where `R represents
1-R, i.e. “unreliability”

March 9, 2021 Fault Tolerant Computing
©Y.K. Malaiya

47

Triple Modular Redundancy

• Popular high-reliability
scheme: 2-out-of-3 system

• Output is obtained using a
majority voter

1

3

2 V

32

32

3
3

2

23
)1(3

)1(
3

RR
RRR

RR
i

R ii

i
TMR

-=

+-=

-÷÷
ø

ö
çç
è

æ
= -

=
å

Where R is the reliability of a
single module. This assumes
that the voter is perfect, a
reasonable assumption if the
voter complexity is much less
than an individual module.

March 9, 2021 Fault Tolerant Computing
©Y.K. Malaiya

48

Triple Modular Redundancy

0

0.25

0.5

0.75

1

0 0.25 0.5 0.75 1

Module Reliability

Sy
st

em
 R

el
ia

bi
lit

y

k-out-of-n

single
module

Here is a plot of the system reliability, when
the individual module reliability varies
between 0 to 1.

Note that if the reliability of an individual
module is less than 0.5, it is more likely to
be bad. Having several such modules, and
taking majority vote, will actually make the
system less reliable, as you see in the figure.

A political application of the principle: majority-
based democracy works only if the individuals
are more likely to make the right decision than
wrong!

March 9, 2021 Fault Tolerant Computing
©Y.K. Malaiya

49

TMR: Permanent Failures

)1 :MTTF module (single
6
5

)e2e3(

)(

e2e3)(
eRLet

0

t3-t2-

0

t3-t2-

t-

ll

ll

ll

l

=

-=

=

-=

=

ò

ò
¥

¥

dt

dttRMTTF

tR

TMR

TMR

0.5!Rafter worseTMR
0.5.Rget we
23 Solving

TMR? as reliable as module single a is When

cross

32

<
=

=-

•

RRR

Thus TMR has a lower MTTF than a single module!

MTTF may not be a good
measure when very high
reliability levels are maintained.

March 9, 2021 Fault Tolerant Computing
©Y.K. Malaiya

50

Imperfect Coverage: Example
U1

U2

i
n

i

iC)R1(R Rgeneral In

7.0R RAssuming
)R-C(1RRR

m

1

0
ms

21

121s

-=•

==•
+=•

å
-

=

0.5

0.6

0.7

0.8

0.9

1

0 0.25 0.5 0.75 1
Coverage

R
el
ia
bi
lit
y

Two parallel modules

Note that better coverage
improves the reliability. When
coverage =1, full potential of the
parallel configuration is achieved.

March 9, 2021 Fault Tolerant Computing
©Y.K. Malaiya

51

TMR+Spares
• TMR core, n-3 spares (assume same failure

rate)
• Scheme A: System failure when all but one

modules have failed. If we start with 3 in the
core and 2 spares, the sequence will be

3+2 ® 3+1 ® 3+0 ® 2+0 ® failure
• Reliability of the system then is

Rs=Rsw[1-nR(1-R)n-1-(1-R)n]
Where R is reliability of a single module and
Rsw is the reliability of the switching circuit
overhead.

• Rsw should depend on total number of modules
n, and relative complexity of the switching
logic.

• Let us assume that Rsw=(Ra)n,
where a is measure of relative complexity,
generally a <<1. Then

• Rs=Ran [1-nR(1-R)n-1-(1-R)n]

Switching

circuit

Disagreement

detector

vTMR

core

spares

3/9/21 52

Why is Defect Density Important?

• Important measurement of reliability
• Often used as release criteria.
• Typical values of defect density /1000 LOC mentioned in literature:

• Long term trend: tolerable defect density limits have been gradually dropping, i.e.
reliability expectations have risen.

 On Release Beginning
Of Unit
Testing Frequently

Cited in
literature

Highly
Tested
programs

NASA
Space
Shuttle
Software

16 2.0 0.33 0.1

Note: NASA space shuttle controversy: see
appendix.

3/9/21 53

A Static Defect Density Model
• Li, Malaiya, Denton (93, 97)

D=C.Fph.Fpt.Fm.Fs.Frv
• C is a constant of proportionality,

based on prior data, used for
calibration.

• Default value of each function Fi
(submodel) is 1.

• Each function Fi is a function of
some measure of the attribute.

Possible factors

Phase

Programming Team

Process Maturity

Structure

Requirement Volatility

Reuse factor: A simple analysis

• u: fraction of software reused
• dr, dn: defect density of reused software, defect

density of new software, dr < dn
• Total defects = [u. dr+(1-u). dn]S

Where S is software size

• If there was no reuse, defects would be dnS
• Normalizing,

– Reuse factor Fr(u, dr/dn)=[u. dr / dn +(1-u)]
– Fr is 1 if there is no reuse, <1 if reuse.

3/9/21 54

3/9/21 55

Static Model: Example
D = C.Fph.Fpt.Fm.Fs.Frv

•For an organization, C is between 12 and 16. The team has average
skills and SEI maturity level is II. About 20% of code in assembly.

Other factors are average (or same as past projects).

Estimate defect density at beginning of subsystem test
phase.

•Upper estimate=16´2.5´1´1´(1+0.4 ´0.20)´1=43.2/KSLOC

•Lower estimate= 12´2.5´1´1´(1+0.4´0.20)´1=32.4/KLOC

Here the structure factor is 1+0.4´0.20 because of some assembly
code. Factor 2.5 is for the beginning of the subsystem phase.

3/9/21 56

Exponential SRGM Derivation Pt 1
§ Notation

• Ts: average single execution time
• ks: expected fraction of faults found during Ts
• TL: time to execute each program instruction once

ratio exposurefault is K where

)()()(

)()(

1

s

L
s

L

ss

T
Tk

tNtN
T
K

dt
tdN

tNkT
dt
tdN

=

==-

=-

b
Notation: Here we replace
Ks and Ts by more
convenient K and TL.

Key
assumption

3/9/21 57

Exponential SRGM Derivation Pt 2
• We get

• For t®¥, total bo=N(0) faults would be eventually
detected. A “finite-faults-model”.

• Assumes no new defects are generated during
debugging.

• Proposed by Jelinski-Muranda ‘71, Shooman ‘71,
Goel-Okumoto ‘79 and Musa ‘75-’80. also called
Basic.

e)N(= N(t) t- 1b0

)e - (1 = (t) t-
o

1bbµ e = (t) t-
1o

1bbbl
The 2 equations

contain the
same

information.

3/9/21 58

A Basic SRGM (cont.)
• Note that parameter b1 is given by:

• S: source instructions,
• Q: number of object instructions per source instruction

typically between 2.5 to 6 (see page 7-13 of Software
rteliability Handbook, sec 7)

• r: object instruction execution rate of the computer
• K: fault-exposure ratio, range 1×10-7 to 10×10-7, (t is in

CPU seconds). Assumed constant here*.
• Q, r and K should be relatively easy to estimate.

)
r

Q(S

K
T
K =

L
1 1..

=b

*Y. K. Malaiya, A. von Mayrhauser and P. K. Srimani, "An examination of fault exposure ratio,“
in IEEE Transactions on Software Engineering, vol. 19, no. 11, pp. 1087-1094, Nov 1993

http://www.cs.colostate.edu/~cs530/rh/section7.pdf

3/9/21 59

SRGM : “Logarithmic Poisson”
• Many SRGMs have been proposed.
• Another model Logarithmic Poisson model, by Musa-

Okumoto, has been found to have a good predictive
capability

• Applicable as long as µ(t) < N(0). Practically always
satisfied. Term infinite-faults-model misleading.

• Parameters bo and b1 don’t have a simple interpretation.
An interpretation has been given by Malaiya and Denton (What Do the Software
Reliability Growth Model Parameters Represent?).

t) + (1 = (t) 1o bbµ ln
t + 1

 = (t)
1

1o

b
bb

l

http://www.cs.colostate.edu/~malaiya/p/denton97.pdf

3/9/21 60

Example: SRGM with Test Data (cont.)
Figure 1: Using an SRGM

0

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0 5 10 15 20

Hours

fa
ilu

re
 in

te
ns

ity

measured values

Fitted
model

Failure
intensity
target

