CS535 Big Data | Computer Science | Colorado State University

PART B. GEAR SESSIONS
SESSION 4: LARGE SCALE RECOMMENDATION SYSTEMS AND SOCIAL MEDIA

Sangmi Lee Pallickara
Computer Science, Colorado State University
http://www.cs.colostate.edu/~cs535

FAQs
- Your disk quota is 20GB (per student)
- If you need more space, please let me know ASAP

Topics of Today's Class
- Part 1: Introduction to Social Network Analysis and Clustering Social Networks
- Part 2: Finding similar nodes: Simrank
- Part 3: Counting Triangles

Social Networks as Graphs
- Social networks are naturally modeled as graphs
 - Social graph
 - Nodes
 - Edge connects two nodes
 - If the nodes are related by the relationship that characterizes the network

Discussions
- "Friends" relationship graph
 - B is a friend with A, C, and D
- Suppose X, Y, and Z are arbitrary nodes of this graph, with edge (X,Y) and (X,Z)
- What would we expect the probability of an edge between Y and Z to be?

http://www.cs.colostate.edu/~cs535

Spring 2020 Colorado State University, page 1
Discussions -- continued

- Suppose X, Y, and Z are arbitrary nodes of this graph, with edge (X,Y) and (X,Z).
 - There are 21 pairs of nodes that could have had an edge between them.
- Currently there are 9 edges (friendships).
- If the graph is very large enough, the probability would be very close to 9/21 = 0.429.
- However, the graph is quite small:
 - X, Y, and Z already have 2 edges.
 - Therefore among the 19 remaining pairs of nodes, 7/19 = 0.368.

Locality expected in a social network

Total 9 positive cases and 7 negative cases

Therefore, the fraction of times the third edge exists is 9/16 = 0.563.

It is much larger than 0.368 expected values.

Varieties of Social Networks

- Telephone Networks
 - Nodes with phone numbers
 - Edge between two nodes if a call has been placed (in some fixed period of time)
- Email Networks
 - Nodes?
 - Edges?
- Facebook Networks
 - Nodes?
 - Edges?
- Collaboration Networks
 - Nodes?
 - Edges?

Graphs with several different node types

- Social phenomena involving entities of different types
- E.g. Collaborative networks
 - Authorship graph
 - Authors
 - Papers
 - One graph? Two graphs?
 - How about comments and “likes” for facebook?
 - User
 - Photo
 - Comment
 - Post
 - k-Partite graph with k > 1

A tripartite graph representing users, tags, and photos

- Three sets of nodes
- Users {U₁, U₂}
- Tags {T₁, T₂, T₃}
- Web page {W₁, W₂, W₃}
- All edges connect nodes from two different sets
- Edge (U₁, T₁) means that user U₁ has placed a tag T₁ on at least one Web page.
- This graph cannot tell you the ternary information such as who placed which tags on which photo
- DB tables can represent it
Clustering of Social Network Graphs

- Social networks contain entities that are connected by many edges
- Group of friends
- Group of researchers interested in the same topic

Distance Measures for Social-Network Graphs

- How will you define “distance” in a graph?

We can assume that nodes are close if they have an edge between them
- Distant if not
- The distance \(d(x, y) \) is 0 if there is an edge \((x, y)\) and 1 if there is no such edge
- We can use any pair of values
 - Such as 1 and ∞
- Can this be a valid distance measures?
 - No, they violate the triangle inequality
 - If there are edges \((A, B)\) and \((B, C)\), but no edge \((A, C)\) then the distance from \(A\) to \(A\) exceeds the sum of the distances from \(A\) to \(B\) and \(B\) to \(C\)

Applying Standard Clustering Methods: (1) Hierarchical Clustering

(1) Hierarchical (Agglomerative) and (2) point-assignments clustering

(1) Hierarchical clustering
- Distance based
- intercluster distance: the minimum distance between nodes of the two clusters
- Two communities \(\{A, B, C\}\) and \(\{D, E, G, F\}\)
 - \(\{D, E, F\}\) and \(\{D, F, G\}\) as two subcommunities of \(\{D, E, G, F\}\)
- Problem
 - Chance to combine B and D
 - Where to place D
 - Can be deferred until we assign some other nodes to the clusters
 - Still chances to make mistakes

http://www.cs.colostate.edu/~cs535
Betweenness

- A method to find communities in social networks
- Definition of the betweenness of an edge \((u, v)\)
 - The number of pairs of nodes \(x\) and \(y\) such that the edge \((u, v)\) lies on the shortest path between \(x\) and \(y\)
 - What if there are several possible shortest paths between \(x\) and \(y\)?
 - Edge \((u, v)\) is credited with the fraction of those shortest paths that include the edge \((u, v)\)
- Higher score means
 - Edge \((u, v)\) runs between two different communities
 - \(u\) and \(v\) do not belong to the same community.

Betweenness: Example

- Which edge has the highest betweenness?
 - a. \((A, B)\)
 - b. \((B, D)\)
 - c. \((D, E)\)
 - d. \((E, F)\)

```
A B C D G E F
```

Betweenness: Example (answer)

- Which edge has the highest betweenness?
 - a. \((A, B)\)
 - b. \((B, D)\)
 - c. \((D, E)\)
 - d. \((E, F)\)

- Edge \((B, D)\) has the highest betweenness
 - This edge is on every shortest path between any of \(A, B,\) and \(C\) to any of \(D, E, F,\) and \(G\)
 - \((B, D)\)'s betweenness is \(3 \times 4 = 12\)
 - Edge \((D, F)\) is on only four shortest paths
 - those from \(A, B, C,\) and \(D\) to \(F\)

Girvan-Newman Algorithm

- Measuring the betweenness of edges
 - The number of shortest paths going through each edge
- Girvan-Newman (GN) algorithm
 - Visits each node \(X\) once and computes the number of shortest paths from \(X\) to each of the other nodes that go through each of the edges
 - Starting with BFS
Girvan-Newman Algorithm

- Step 1: Perform a breadth-first search (BFS) of the graph
- Step 2: Label each node by the number of shortest paths that reach it from the root
 - Starting with 1 for the root
 - From the top down, label each node Y by the sum of the labels of its parents
- Step 3: Calculate for each edge the sum over all nodes Y of the fraction of shortest paths from the root X to Y that go through e

Using Betweenness to Find Communities

- The betweenness scores
 - Similar to a distance measure on the nodes of the graph
 - It is NOT exactly a distance measure
 - Not defined for pairs of nodes that are unconnected by an edge
 - Might not satisfy the triangle inequality even when defined

- What if we take the edges in order of increasing betweenness and add one at a time
 - Some connected components of the graph form some clusters
 - Higher betweenness will results in the larger cluster

Using Betweenness to Find Communities

- (B,D) has the highest betweenness
 - Remove it!
 - (A,B,C) vs. (D,E,G,F)

- Continue?
 - 5: (A, B) and (B, C)
 - 4.5: (D, E) and (D, G)
 - 4: (D, F)
 - Stop here..
 - What do we learn from this?
Direct Discovery of Communities

- Finding Cliques?
 - A subset of vertices of an undirected graph such that every two distinct vertices in the clique are adjacent
 - Intuitive starting point
- Finding maximal cliques NP-complete
- Even approximating the maximal clique is hard

Complete Bipartite Graphs

- A complete bipartite graph $K_{s,t}$ consists of s nodes on one side and t nodes on the other with all st possible edges between the nodes of one side and the other

 - How do we use CBG to find communities?
 - Divide the nodes into two equal groups at random
 - If a community exists, about half its nodes to fall into each group, and about half its edges would go between groups

Finding Complete Bipartite Subgraphs

- Suppose we are given a large bipartite graph G, and we want to find instances of $K_{s,t}$ within it
- We assume,
 - the instance of $K_{s,t}$ we are looking for has t nodes on the left side
 - $s \leq t$
 - Here, the threshold r
 - The number of nodes that the instance of $K_{s,t}$ has on the right side

 - Finding collection(s) of very popular blue nodes
 - Finding frequent itemsets I of size t
 - If a set of r nodes on the left side is frequent, then they all occur together in at least r baskets
 - Basket: nodes of the “right” subgraph

Example

- Left side $\{1,2,3,4\}$
- Right side $\{a,b,c,d\}$
- Basket i consists of "items" 1 and 4
 - $s=1, t=4, r=1$ and $r=3$
- If $s=2$ and $t=1,
 - WE MUST FIND ITEMSETS OF SIZE 1 THAT APPEARS AT LEAST TWO BASKETS.
- 1 and 3
Random Walks with Restart

- Focus on one particular node N of a social network
- Track where the random walker winds up on short walks from that node
- Modify the matrix of transition probabilities to have a probability of transitioning to N from any node

Simrank

- Measure the similarity between nodes of the same type
 - By tracking where random walkers on the graph wind up when starting at a particular node
- Applicable to graphs with different types of nodes

Random Walks with Restart: Example

Imagine that a person randomly “walking” on a social network
- A walker at a node N of an undirected graph will move with equal probability to any of the neighbors of N
- A walker starts out at node T_1
- There is a good chance the walker would visit T_2
- Higher chance than visiting T_3 or T_4
- Can we infer that tags T_1 and T_2 are related or similar in some way?
- Yes
- E.g. the tag T_1 and T_2 are used for a common web page W_1 and they also have a common user U_1 who tag the page using Tag 1 and 2

Formally, let M be the transition matrix of the graph G. That is, the entry in row i and column j of M is $1/k$ if node j of G has degree k, and one of the adjacent nodes is i. Otherwise, this entry is 0.

Random Walks with Restart

- Use β as the probability that the walker continues at random
- $(1 - \beta)$ is the probability the walker will teleport to the initial node N
- Let v be the column vector that has 1 in the row for node N and 0’s elsewhere
- v' is the column vector that reflects the probability the walker is at each of the nodes at a particular round
- v' is the probability the walker is at each of the nodes at the next round,
- v' is related to v by:
 $$v' = (\beta M + (1 - \beta)1)v$$

Assume that we use same matrix M and $\beta = 0.8$
Also, assume that node N is for Picture 1

$$M = \begin{bmatrix}
0 & 0 & 0 & 1/2 & 0 \\
0 & 0 & 0 & 1/3 & 2/3 \\
0 & 0 & 0 & 1/2 & 0 \\
0 & 0 & 0 & 1/2 & 0 \\
1/2 & 0 & 1/2 & 0 & 0 \\
\end{bmatrix}$$

$$v' = (0.8M + (1 - 0.8)1)v$$

http://www.cs.colostate.edu/~cs535

4/20/2020 Week 13-A Sangmi Lee Pallickara
If we start with \(v = e_N \), then the sequence of estimates of the distribution of the walker that we get is:

- Picture 2's similarity is 0.066
- Picture 3's similarity is 0.145