PART B. GEAR SESSIONS
SESSION 5: ALGORITHMIC TECHNIQUES FOR BIG DATA

Sangmi Lee Pallickara
Computer Science, Colorado State University
http://www.cs.colostate.edu/~cs535

Topics of Today's Class

- Part 1: Locality Sensitive Hashing for Minhash Signatures and The Theory of Locality Sensitive Functions
- Part 2: LSH Families for Other Distance Measures
- Part 3: Geohash and Bloom filter

Planning the computation

- Creating DataFrames
- Generating Hash values
- Calculating signature

<table>
<thead>
<tr>
<th>Data element</th>
<th>S1</th>
<th>S2</th>
<th>S3</th>
<th>S4</th>
<th>H+ and -</th>
<th>2x+1 and -</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>5</td>
<td>0</td>
<td>3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>H+ and -</th>
<th>1</th>
<th>3</th>
<th>0</th>
<th>1</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>2x+1 and -</td>
<td>h1</td>
<td>1</td>
<td>3</td>
<td>0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>h2</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

GEAR Session 5. Algorithmic Techniques for Big Data
Lecture 2. Locality Sensitive Hashing
Locality Sensitive Hashing for Minhash Signatures

General LSH Operations in Apache Spark

- Feature Transformation
 - Add hashed values as a new column
 - Users can specify input and output column names by setting inputCol and outputCol to adjust the dimensionality
- Supports multiple LSH hash tables
 - Users can specify the number of hash tables by setting numHashTables
- Approximate Similarity Join
 - Takes two datasets and approximately returns pairs of rows in the datasets whose distance is smaller than a user-defined threshold
- Approximate Nearest Neighbor Search
 - Takes a dataset (of feature vectors) and a key (a single feature vector), and it approximately returns a specified number of rows in the dataset that are closest to the vector
 - A distance column will be added to the output dataset to show the true distance between each output row and the searched key
Calculating MinHash values with Apache Spark

- https://spark.apache.org/docs/2.2.3/ml-features.html#minhash-for-jaccard-distance

Input sets for MinHash
- Both dense and sparse vectors are supported.
- Sparse vectors are recommended for efficiency.

```scala
val key = Vectors.sparse(6, Seq((1, 1.0), (3, 1.0)))
val mh = new MinHashLSH().setNumHashTables(5).setInputCol("features").setOutputCol("hashes")
val model = mh.fit(dfA)
```

The theory of Locality Sensitive Functions

- The LSH for Minhash signatures is one example of a family of functions (in this case the minhash functions) that can be combined (by the banding technique).
- Distinguish the closer pairs.
- The steepness of the S-curve reflects how effectively we can avoid false positives and false negatives among the candidate pairs.
- How about other families of functions? Can we apply similar approaches?

Conditions for LSHs

- There are three conditions that we need for a family of functions:
 1) They must be more likely to make close pairs be candidate pairs than distant pairs.
 2) They must be statistically independent.
 3) They must be efficient, in two ways:
 - They must be able to identify candidate pairs in time much less than the time it takes to look at all pairs.
 - The combined functions must also take time that is much less than the number of pairs.

Locality-Sensitive Functions

- Purpose:
 - Consider functions that take two items and render a decision about whether these items should be a candidate pair.
- For "hash" items:
 - The decision will be based on whether or not the result is equal.

http://www.cs.colostate.edu/~cs535
Locality-Sensitive Functions --continued
- Let \(d_1 < d_2 \) be two distances according to a target distance measure \(d \)
- A family \(F \) of functions is said to be \((d_1, d_2, p_1, p_2) \)-sensitive if for every \(f \) in \(F \):
 1. If \(d(x,y) \leq d_1 \), then the probability that \(f(x) = f(y) \) is at least \(p_1 \)
 2. If \(d(x,y) \geq d_2 \), then the probability that \(f(x) = f(y) \) is at most \(p_2 \)

Amplifying a Locality-Sensitive Family
- Suppose that we are given a \((d_1, d_2, p_1, p_2) \)-sensitive family \(F \)
- Construct a new family \(F' \) by the AND-construction on \(F \)
 - Each member of \(F' \) consists of \(d \) members of \(F \)
 - The members of \(F' \) are independently chosen to make a member of \(F' \)
- Construct a new family \(F'' \) by the OR-construction on \(F' \)
 - Each member of \(F'' \) consists of \(d \) members of \(F' \)
 - \(F'' \) is a \((d_1, d_2, p_1, p_2) \)-sensitive family

Locality-Sensitive Families for Jaccard Distance
- From the previous example in Week 13-B
- A minhash function \(h \)
 - \(x \) and \(y \) are a candidate pair if and only if \(h(x) = h(y) \)
 - The family of minhash functions is a \((d_1, d_2, 1 - d_1, 1 - d_2) \)-sensitive family for any \(d_1 \) and \(d_2 \), where \(0 \leq d_1 \leq d_2 \)
 - If \(d(x,y) \leq d \), where \(d \) is the Jaccard distance, then \(SIM(x, y) = 1 - d(x, y) \leq 1 - d \)
 - Jaccard similarity of \(x \) and \(y \) is equal to the probability that a minhash function will hash \(x \) and \(y \) to the same value

1. LSF Families for Hamming Distance
- Suppose we have a space of \(d \)-dimensional vectors
 - \(h(x,y) \) denotes the Hamming distance between vectors \(x \) and \(y \)
 - The function \(f(x) \) is the \(i \)th bit of vector \(x \)
 - \(f(x) = f(y) \) if and only if vectors \(x \) and \(y \) agree in the \(i \)th position
 - Probability that \(f(x) = f(y) \) for a randomly chosen \(i \) is exactly \(1 - h(x,y) \)
- The family \(F \) consisting of the functions \(\{f_1, f_2, \ldots, f_d\} \)
 - \(\{d, d, 1 - d, d, 1 - d, \ldots\} \)-sensitive family of hash functions for any \(d \)-valued

2. Random Hyperplanes and the Cosine Distance [1/3]
- What if we use the cosine distance?
 - Two vectors \(x \) and \(y \) that make an angle \(\theta \) between them
 - These vectors may be in a space of many dimensions
- The angle between them is measured in the plane defined by these two vectors
 - Hyperplane through the origin
 - Intersects the plane of \(x \) and \(y \) in a line

http://www.cs.colostate.edu/~cs535

Spring 2020 Colorado State University, page 3
2. Random Hyperplanes and the Cosine Distance [2/3]

- Hyperplane through the origin
 - Intersects the plane of x and y in a line
 - Pick the normal vector (v) to the hyperplane
 - The hyperplane is the set of points whose dot product with v is 0
- Case 1. Pick a vector v that is normal to the hyperplane whose projection is represented with l
 - The vector x and y are on different side of hyperplane
 - Dot products $v.x$ and $v.y$ will have different signs

Locality-sensitive family F for the cosine distance

- For a randomly chosen vector v, given two vectors x and y, say $f(x) = f(y)$ if and only if the dot products $v.x$ and $v.y$ have the same sign
- The parameters are same as the Jaccard-distance family
 - The scale of distances is 0–180 rather than 0–1
- Now, F can be defined as
 - $(d_1, d_2, (180 - d_1) / 180, (180 - d_2) / 180)$-sensitive family of hash functions

2. Random Hyperplanes and the Cosine Distance [3/3]

- Case 2. Pick a vector v that is normal to the hyperplane whose projection is represented with l
 - The vector x and y are on the same side of hyperplane
 - Dot products $v.x$ and $v.y$ will have the same signs
 - What is the probability that the randomly chosen vector is normal to a hyperplane that looks like l?
 - Assume that we can extend the vectors

3. LSH Families for Euclidean Distance [1/2]

- Let’s start with a 2-dimensional Euclidean space
- Each hash function f in our family F will be associated with a randomly chosen line in this space
- The segments of the line (with the width of a) are the buckets into which function f hashes points
 - If d is small than a
 - there is a good chance that the two points hash to the same bucket
 - If d is large, the chance that the two points will fall in the same bucket becomes greater
 - If d is 90 degrees, then the two points fall in the same bucket!

3. LSH Families for Euclidean Distance [2/2]

- If d is greater than a,
 - To have two points fall in the same bucket
 - it must be $\leq a$
 - If $d \geq 2a$, there is no more than a $1/3$ chance the two points fall in the same bucket
- The family F for the Euclidean distance
 - $(\alpha_2, 2\alpha, 12, 1/3)$-sensitive family of hash function
- For distances up to α_2 the probability is at least $1/2$ that two points at that distance will fall in the same bucket
- For distances at least 2α the probability points at that distance will fall in the same bucket is at most $1/3$
Geohash

- Latitude/longitude geocode system
- Provides arbitrary precision
- By selecting the length of the code gradually
- All of the geospatial points within a bounding box will be mapped to the same hash output
- You can specify the resolution as well

Colorado State University
- 40.5748° N, 105.0810° W
- Geohash: 9xjqbdqm5h3y1

Resolutions with length of geohash string

http://www.cs.colostate.edu/~cs535

Geohash Encoding

01001011
001

- LAT: 40.5747652 LON: -105.0865006 (CSU)
- Phase 1. Create interleaved bit string geobits[]
 - Even bits are from longitude code, LON
 - Odd bits are from latitude code, LAT
- Step 1.
 - If -180 <= LON <= 0 set geobits[0] as 0
 - If 0 < LON < 180 set geobits[0] as 1
- Step 2.
 - If -90 <= LAT <= 0 set geobits[1] as 0
 - If 0 < LAT < 90 set geobits[1] as 1
Geohash Encoding

- LAT: 40.5747652 LON: -105.0865006 (CSU)

 - Step 3.
 - Since geobits[0] = 0,
 - If -180 <= LON <= 90 set geobits[2] as 0
 - If -90 < LON < 0 set geobits[2] as 1

 - Step 4.
 - Since geobits[1] = 1
 - If 0 <= LAT <= 45 set geobits[3] as 0
 - If 45 < LAT < 90 set geobits[3] as 1

 Repeat this process until your precision requirements are met
 - Currently geohash bit string is 01001

GEAR Session 5. Algorithmic Techniques for Big Data
Lecture 2. Memory Efficient Data Sketch
Bloom Filter

Bloom filter?
- Checking the membership of a set
- Known uses
 - Removing most of the non-membership values
 - Pre-filtering a data set for an expensive set membership check
- Created by Burton Howard Bloom in 1970
- Probabilistic data structure used to test whether a member is an element of a set
- Strong space advantage

Building a Bloom filter
- m
 - The number of bits in the filter
- n
 - The number of members in the set
- p
 - The desired false positive rate
- k
 - The number of different hash functions used to map some element to one of the m bits with a uniform random distribution

http://www.cs.colostate.edu/~cs535
Building a Bloom filter

- \(m = 8 \)
- The number of bits in the filter
- \(n = 3 \)
- The number of members in the set \(T = \{ 5, 10, 15 \} \)
- \(k = 3 \)
- \(h_1(x) = 3x \mod 8 \)
- \(h_2(x) = (2x +3) \mod 8 \)
- \(h_3(x) = x \mod 8 \)

Initial bloom filter: 0 0 0 0 0 0 0 0

Building a Bloom filter

- \(m = 8 \), \(n = 3 \) target set \(T = \{ 5, 10, 15 \} \)
- \(k = 3 \)
- \(h_1(x) = 3x \mod 8 \)
- \(h_2(x) = (2x +3) \mod 8 \)
- \(h_3(x) = x \mod 8 \)

- \(h_1(5) = 7 \), \(h_2(5) = 5 \), \(h_3(5) = 5 \)

Building a Bloom filter

- After \(h_1(5) = 7 \) the \(7^{th} \) bit is set to 1

Building a Bloom filter

- \(h_2(5) = 5 \)
- After \(h_2(5) = 5 \) the \(5^{th} \) bit is set to 1

Building a Bloom filter

- \(h_3(5) = 5 \)
- After \(h_3(5) = 5 \) the \(5^{th} \) bit is set to 1

Building a Bloom filter

- After encoding 5, \(h_1(10) = 6 \), \(h_2(10) = 7 \), \(h_3(10) = 2 \)

Building a Bloom filter

- After \(h_1(10) = 6 \) the \(6^{th} \) bit is set to 1

Building a Bloom filter

- After \(h_2(10) = 7 \) the \(7^{th} \) bit is set to 1

Building a Bloom filter

- After \(h_3(10) = 2 \) the \(2^{nd} \) bit is set to 1

Building a Bloom filter

- After encoding 5, \(h_1(15) = 6 \), \(h_2(15) = 7 \), \(h_3(15) = 7 \)

Building a Bloom filter

- After \(h_1(15) = 5 \) the \(5^{th} \) bit is set to 1

Building a Bloom filter

- After \(h_2(15) = 1 \) the \(1^{st} \) bit is set to 1

Building a Bloom filter

- After \(h_3(15) = 7 \) the \(7^{th} \) bit is set to 1

Applying a Bloom filter

- Is 5 part of set \(T \)?
- \(h_1(5), h_2(5), h_3(5) \) all bits are 1
- 5 is \textit{probably} a part of set \(T \)

Applying a Bloom filter

- Is 8 part of set \(T \)?
- \(h_1(8), h_2(8), h_3(8) \)
- 8 is \textit{NOT} a part of set \(T \)

http://www.cs.colostate.edu/~cs535

Spring 2020 Colorado State University, page 7
Applying a Bloom filter

- Is 9 part of set T?
 - $h_1(9), h_2(9), h_3(9)$
 - 9 is NOT a part of set T

After encoding 5, 10 and 15	1	0	1	1	0	1
Check $h_1(9)$ = 3	1	1	1	0	1	0
Check $h_2(9)$ = 5	1	1	1	0	1	0
Check $h_3(9)$ = 1	1	1	1	0	1	0

After encoding 5, 10 and 15

Applying a Bloom filter

- Is 7 part of set T?
 - $h_1(7), h_2(7), h_3(7)$
 - Th bits are 1
 - 7 is probably a part of set T

After encoding 5, 10 and 15	1	0	1	1	0	1
Check $h_1(7)$	1	1	1	0	1	0
Check $h_2(7)$	1	1	1	0	1	0
Check $h_3(7)$	1	1	1	0	1	0

False positive rate

$$fp_r = \left(1 - \left(1 - \frac{m}{n}\right)^k\right)^k = \left(1 - e^{-kn/m}\right)^k$$

- m=number of bits in the filter
- n=number of elements
- k=number of hashing functions

The false positive probability p_r as a function of number of elements n in the filter and the filter size m.

False positive rate

- A bloom filter with an optimal value for k and 1% error rate only needs 9.6 bits per key.
- Add 4.8 bits/key and the error rate decreases by 10 times
- 10,000 words with 1% error rate and 7 hash functions
 - ~12KB of memory
- 10,000 words with 0.1% error rate and 11 hash functions
 - ~18KB of memory

How big should I make my Bloom Filter?

- Try various values of k and m
 - To achieve target false-positive rate $(1-fp_r)$
- Then, how many hash functions should I use?
 - The more hash functions you have
 - The slower your bloom filter
 - The quicker it fills up
 - If you have few hash functions
 - Too many false positives
 - Given an m and an n, the optimal value of k
 - $(m/n)\ln(2)$

Questions?