How do we write a critical review?

Objective
- Identify and explain the argument that the authors are making
- Provide your own analysis about the authors' argument
- Your review should not exceed 3 pages
- Your list of references does not count towards the page limit
- Team Submission
- Do not summarize the paper
 - You are not re-writing somebody else's research paper
 - You are analyzing the author's argument

FAQs

- PA1
 - Your port ranges are announced
 - Guideline for the on-line students is available on the course web page (Assignments.html)
- GEAR session 1 papers are available
- How to write a good critical review
- Quiz 1 (Feb 7 - 9, Friday, Saturday, Sunday)
- Accommodation Request

- CompositeInputFormat() with the sorted data (CS435 Week 4-B)
 - An InputFormat capable of performing joins over a set of data sources sorted and partitioned the same way. A user may define new join types by setting the property mapred.join.define.<ident> to a classname.
 - In the expression mapred.join.expr, the identifier will be assumed to be a ComposableRecordReader.
 - mapred.join.keycomparator can be a classname used to compare keys in the join.
 - This requires data preprocessing to sort dataset

http://www.cs.colostate.edu/~cs535

Spring 2020 Colorado State University
How do we write a critical review?

3. Your Analysis

- You can analyze whether or not you find the author's argument compelling.
- Example questions for evaluating their arguments:
 - Theoretical questions:
 - How does the author encapsulate the phenomena or approach? Does it provide sufficient theoretical background (if needed)?
 - Definitional questions:
 - Are all the concepts in the text clear? Does the author define a concept vaguely to allow it to travel across different situations?
 - Evidence questions:
 - How does the author’s evidence (e.g., experiments, proofs) support their argument? Do they have a specific evidence to prove the more general point?
 - Is the evidence credible? Is the setup of experiment reasonable?
 - What are the implications of this argument? How has the author dealt with this issue?

- Implication/Put-policy relevant questions:
 - What are the implications of this argument? How has the author dealt with this issue?

4. Conclusion

- a. Reflect on how you have proven your argument.
- b. What are the advantages of the proposed approach?
- c. What are the weaknesses of the proposed approach?
- d. What problems are explicitly or implicitly left as future research questions?

Your review must include items a, b, c, and d.

References

- If your argument uses other articles, you should list those in a separate reference section and cross-reference that within your text.

Topics of Today’s Class

- 3. Distributed Computing Models for Scalable Batch Computing
- Introduction to Spark
- Reading for the Week 3:

Programming components of MapReduce

- Driver
- Mapper
- Reducer
- InputFormat
- Combiner
- Partitioner
- OutputFormat

How MapReduce Works

http://www.cs.colostate.edu/~cs535
Data locality optimization

- Hadoop tries to run the map task on a node where the input data resides in HDFS
- Minimizes usage of cluster bandwidth
- If all replication nodes are running other map tasks
 - The job scheduler will look for a free map slot on a node in the same rack

Shuffle

- The process by which the system performs the sort and transfers the map outputs to the reducers as inputs
- MapReduce guarantees that the input to every reducer is sorted by key

Combiner functions

- Minimize data transferred between map and reduce tasks
- Users can specify a combiner function
- To be run on the map output
 - To replace the map output with the combiner output

Combiner example

- Example (from the previous max temperature example)—Without combiner
 - The first map produced,
 - (1960, 3), (1965, 20), (1968, 10)
 - The second map produced,
 - (1980, 20), (1985, 15)
 - The reduce function is called with a list of all the values,
 - (1960, (3, 20, 10), 1968, (10))
 - Output will be,
 - (1960, (3, 20, 10))

We may express the function as,
- \(\max(0, 20, 10, 25, 15) \)
- \(= \max(\max(0, 20, 10), \max(25, 15)) \)
- \(= \max(25, 25) = 25 \)
Combiner example

- Example (from the previous max temperature example)—With combiner
 - The first map produced:
 - (1950, 0), (1950, 20), (1950, 10) \(\rightarrow\) (1950, 20)
 - The second map produced:
 - The reduce function is called with a list of all the values,
 - (1950, [20, 25])
 - Output will be,
 - (1950, 25)

Combiner function

- Run a local reducer over Map output
- Reduce the amount of data shuffled between the mappers and the reducers
- Combiner cannot replace the reduce function
 - Why?

Combiner function : Requirements

- Function should be commutative and associative
- Finding Maximum number (Yes/No)
- Finding distribution (Yes/No)
- Calculating Sum (Yes/No)
- Finding an average (Yes/No)

YARN Framework

- To provide the scalability to MapReduce
 - Splitting responsibility of the jobtracker
 - Scheduling
 - Task progress monitoring
- MapReduce is one type of YARN application

http://www.cs.colostate.edu/~cs535
YARN (MapReduce 2)

- Resource manager
 - Manages the use of resources across the cluster
- Node manager
 - Launches and monitors the compute containers on machines in the cluster
- Application master
 - Manages the lifecycle of applications running on the cluster
 - Application master negotiates with the resource manager for cluster resources
 - Node managers oversee containers not to use more resources than allocated

A MapReduce job using YARN

Progress and status updates

- Task reports its progress and status back to its application master
 - Every 3 seconds over the umbilical interface
- The client polls the application master every second
 - mapreduce.client.progressmonitor.pollinterval

In-Memory Cluster Computing: Apache Spark

http://www.cs.colostate.edu/~cs535
Distributed processing with the Spark framework

This material is built based on
- Spark programming guide
 - https://spark.apache.org/docs/2.2.0/
 - Job Scheduling
 - https://spark.apache.org/docs/2.0.0-preview/job-scheduling.html

Inefficiencies for emerging applications: (1) Data reuse
- Data reuse is common in many iterative machine learning and graph algorithms
 - e.g. PageRank, K-means clustering, and logistic regression
 - Inefficiencies:
Type	Access Time	Rate
SRAM	10 nanoseconds	1
DRAM	50-150 nanoseconds	5-15
HDD	9-15 milliseconds	900 ~ 1,500

Inefficiencies for emerging applications: (2) Interactive data analytics
- User runs multiple ad-hoc queries on the same subset of the data

Existing approaches
- Hadoop
 - Writing output to an external stable storage system
 - e.g. HDFS
 - Substantial overheads due to data replication, disk I/O, and serialization
- Pregel
 - Iterative graph computations
- HaLoop
 - Iterative MapReduce interface
- Pregel/HaLoop support specific computation patterns
 - e.g. looping a series of MapReduce steps

A unified stack
- Spark contains multiple closely integrated components
- Spark core
 - Computational engine
 - Scheduling, distributing, and monitoring applications
- Spark Streaming
 - Processes live streams of data
- MLlib
 - Machine learning functionality
 - ML algorithms (classification, regression, clustering and collaborative filtering)
- Model evaluation
- Data import

http://www.cs.colostate.edu/~cs535
A unified stack
- GraphX
 - Library for manipulating graphs
 - Performs graph-parallel computations
 - Extends the Spark RDD API
- Cluster Managers
 - Spark can run over a variety of cluster managers
 - Hadoop YARN, Apache Mesos, and Spark built-in cluster manager (Standalone scheduler)

Running a simple example
```scala
/* SimpleApp.scala */

import org.apache.spark.sql.SparkSession

object SimpleApp {
  def main(args: Array[String]) {
    val logFile = "YOUR_SPARK_HOME/README.md" // Should be some file on your system
    val spark = SparkSession.builder.appName("Simple Application").getOrCreate()
    val logData = spark.read.textFile(logFile).cache()
    val numAs = logData.filter(line => line.contains("a")).count()
    val numBs = logData.filter(line => line.contains("b")).count()
    println(s"Lines with a: $numAs, Lines with b: $numBs")
    spark.stop()
  }
}
```

Self-contained Application | sbt build file
```
case := "Simple Project"
version := "1.0.0"
scalaVersion := "2.11.12"
// additional libraries
libraryDependencies := "org.apache.spark" %% "spark-sql" % "2.4.4"
```

Scala build and run
```
# Your directory layout should look like this
$ find .
# Package a jar containing your application
$ sbt package
# The sbt-submit to run your application
$ YOUR_SPARK_HOME/bin/spark-submit --class "SimpleApp" --master local[4]
target/scale-0.12/simple-project_2.12-1.0.jar ...
lines with a: 46, lines with b: 23
```

In-Memory Cluster Computing: Apache Spark
RDD (Resilient Distributed Dataset)
- Read-only, memory resident partitioned collection of records
- A fault-tolerant collection of elements that can be operated on in parallel
- RDDs are the core unit of data in Spark
- Most Spark programming involves performing operations on RDDs
Creating RDDs

- Loading an external dataset

```scala
val lines = sc.textFile("/path/to/README.md")
```

- Parallelizing a collection in your driver program

```scala
val lines = sc.parallelize(List("pandas", "I like pandas"))
```

Spark Programming Interface to RDD

- Transformations

 - Operations that create RDDs
 - e.g. map, filter, and join
 - RDDs can only be created through deterministic operations on either
 - Data in stable storage
 - Other RDDs

 - If you want to use `lineLengths` again later

```scala
lineLengths.persist()
```

- Actions

 - Operations that return a value to the application or export data to a storage system
 - e.g. collect: returns the elements themselves
 - e.g. save: outputs the dataset to a storage system

```scala
val lines = sc.textFile("data.txt")
val lineLengths = lines.map(s => s.length)
val totalLength = lineLengths.reduce((a, b) => a + b)
```
Questions?