FAQs

- PA2 description will be posted this week

Weekly Reading List

reduce() - Takes a function that operates on two elements of the type in your RDD and returns a new element of the same type. The function should be commutative and associative so that it can be computed correctly in parallel.

```scala
val rdd1 = sc.parallelize(List(1, 2, 5))
val sum = rdd1.reduce{(x, y) => x + y}
// results: sum: Int = 8
```

reduce() vs. fold() - Similar to reduce() but it takes 'zero value' (initial value).

```scala
scala> rdd1.partitions.length
result: res8: Int = 8
scala> val additionalMarks = ("extra", 4)
additionalMarks: (String, Int) = (extra,4)
scala> val sum = rdd1.fold(additionalMarks){(acc, marks) =>
  val sum = acc._2 + marks._2
  ("total", sum)
// result: sum: (String, Int) = (total,206)
```

take(n) - returns n elements from the RDD and attempts to minimize the number of partitions it accesses.

- It may represent a biased collection
- It does not return the elements in the order you might expect
- Useful for unit testing

Persistence
- Caches dataset across operations
 - Nodes store any partitions of results from previous operation(s) in memory reuse them in other actions

- An RDD to be persisted can be specified by `persist()` or `cache()`.
- The persisted RDD can be stored using a different storage level
 - Using a `StorageLevel` object
 - Passing `StorageLevel` object to `persist()`
Persistence levels

<table>
<thead>
<tr>
<th>level</th>
<th>Space used</th>
<th>CPU time</th>
<th>In memory/On disk</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>MEMORY_ONLY</td>
<td>High</td>
<td>Low</td>
<td>Y/N</td>
<td>Slow RDD as serialized Java objects (one byte array per partition)</td>
</tr>
<tr>
<td>MEMORY_ONLY_</td>
<td>Low</td>
<td>High</td>
<td>Y/N</td>
<td>Splits to disk if there is too much data to fit in memory</td>
</tr>
<tr>
<td>SER</td>
<td>Low</td>
<td>High</td>
<td>Some/Some</td>
<td>Stores serialized representation in memory</td>
</tr>
<tr>
<td>MEMORY_AND_DISK</td>
<td>High</td>
<td>Medium</td>
<td>Some/Some</td>
<td>Spills to disk if there is too much data to fit in memory</td>
</tr>
<tr>
<td>MEMORY_AND_DISK_SER</td>
<td>Low</td>
<td>High</td>
<td>Some/Some</td>
<td>Spills to disk if there is too much data to fit in memory. Stores serialized representation in memory</td>
</tr>
<tr>
<td>DISK_ONLY</td>
<td>Low</td>
<td>High</td>
<td>N/Y</td>
<td></td>
</tr>
</tbody>
</table>

In-Memory Cluster Computing: Apache Spark

Spark Cluster
- Each application gets its own executor processes
 - Must be up and running for the duration of the entire application
 - Run tasks in multiple threads
 - Isolate applications from each other
 - Scheduling side (each driver schedules its own tasks)
 - Executor side (tasks from different applications run in different JVMs)
- Data cannot be shared across different Spark applications (instances of SparkContext) without writing it to an external storage system

Spark cluster and resources

- Driver program
 - Each application gets its own executor processes
 - Must be up and running for the duration of the entire application
 - Run tasks in multiple threads
 - Isolate applications from each other
 - Scheduling side (each driver schedules its own tasks)
 - Executor side (tasks from different applications run in different JVMs)
 - Data cannot be shared across different Spark applications (instances of SparkContext) without writing it to an external storage system

- Driver program must listen for and accept incoming connections from its executors throughout its lifetime
 - Driver program must be network addressable from the worker nodes
 - Driver program should run close to the worker nodes
 - On the same local area network

http://www.cs.colostate.edu/~cs535
Cluster Manager Types

- **Standalone**
 - Simple cluster manager included with Spark

- **Mesos**
 - Fine-grained sharing option
 - Frequently shared objects for Interactive applications
 - Mesos master determines the machines that handle the tasks

- **Hadoop YARN**
 - Resource manager in Hadoop 2

Dynamic Resource Allocation

- Dynamically adjust the resources that the applications occupy
 - Based on the workload
 - Your application may give resources back to the cluster if they are no longer used

- Only available on coarse-grained cluster managers
 - Standalone mode, YARN mode, Mesos coarse grained mode

In-Memory Cluster Computing: Apache Spark

RDDs in Spark

- User’s driver program launches multiple workers which read data blocks from a distributed file system and can persist computed RDD partitions in memory

Representing RDDs

- A set of partitions
 - Atomic pieces of the dataset

- A set of dependencies on parent RDDs

- A function for computing the dataset based on its parents

- Metadata about its partitioning scheme

- Data placement

<table>
<thead>
<tr>
<th>Interface used to represent RDDs in Spark</th>
<th>Operation</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>partitions()</td>
<td>Return a list of Partition objects</td>
</tr>
<tr>
<td></td>
<td>preferLocations(p)</td>
<td>List nodes where partition p can be accessed faster due to data locality</td>
</tr>
<tr>
<td></td>
<td>dependencies()</td>
<td>Return a list of dependencies</td>
</tr>
<tr>
<td></td>
<td>iterator(p, partitioners)</td>
<td>Compute the elements of partition p given iterators for its parent partitions</td>
</tr>
<tr>
<td></td>
<td>partitioners()</td>
<td>Return metadata specifying whether the RDD is hash/range partitioned</td>
</tr>
</tbody>
</table>
Lazy Evaluation

- Transformations on RDDs are **lazily evaluated**
 - Spark will NOT begin to execute until it sees an action
 - Spark internally records metadata to indicate that this operation has been requested
- Loading data from files into an RDD is lazily evaluated
- Reduces the number of passes it has to take over our data by grouping operations together

Example: Console Log Mining

```scala
lines = spark.textFile("hdfs://…")
errors = lines.filter(_.startsWith("ERROR"))
errors.persist()
errors.filter(_.contains("HDFS"))
  .map(_.split('/t')(3))
  .collect()
```

Benefits of RDDs as a distributed memory abstraction

- RDDs can only be created ("written") through **coarse-grained transformations**
 - Distributed shared memory (DSM) allows reads and writes to each memory location
 - Reads on RDDs can still be fine-grained
 - A large read-only lookup table
 - Applications perform bulk writes
 - More efficient fault tolerance
 - Lineage based bulk recovery
- RDDs' immutable data
 - System can mitigate slow nodes (Stragglers)
 - Creates backup copies of slow tasks
 - without accessing the same memory
 - Spark distributes the data over different working nodes that run computations in parallel
 - Orchestrates communicating between nodes to integrate intermediate results and combine them for the final result
- Runtime can schedule tasks based on data locality
 - To improve performance
- RDDs degrade gracefully when there is insufficient memory
 - Partitions that do not fit in the RAM are stored on disk

http://www.cs.colostate.edu/~cs535
Applications not suitable for RDDs

- RDDs are best suited for batch applications that apply the same operations to all elements of a dataset
 - Steps are managed by lineage graph efficiently
 - Recovery is managed effectively
- RDDs would not be suitable for applications
 - Making asynchronous fine-grained updates to shared state
 - e.g. a storage system for a web application or an incremental web crawler

Dependency between RDDs

- Narrow dependency
 - Each partition of the parent RDD is used by at most one partition of the child RDD
 - E.g. map, filter, union, join with inputs co-partitioned (if they are both hash/range partitioned with the same partitioner).-> stored in the same node

- Wide dependency
 - Multiple child partitions may depend on a single partition of parent RDD
 - E.g. groupbykey, join with inputs not co-partitioned

http://www.cs.colostate.edu/~cs535
Dependency
- filter (Narrow/Wide)
- leftOuterJoin (Narrow/Wide)
- distinct (Narrow/Wide)
- repartition (Narrow/Wide)
- reduceByKey (Narrow/Wide)

Dependency-Answers
- filter (Narrow/Wide)
- leftOuterJoin (Narrow/Wide)
- distinct (Narrow/Wide)
- repartition (Narrow/Wide)
- reduceByKey (Narrow/Wide)

In-Memory Cluster Computing: Apache Spark Scheduling

Jobs in Spark application
- "Job"
 - A Spark action (e.g. save, collect) and any tasks that need to run to evaluate that action
- Within a given Spark application, multiple parallel tasks can run simultaneously
 - If they were submitted from separate threads

Job scheduling
- Stage is a physical unit of execution
 - A set of parallel tasks
- User runs an action (e.g. count or save) on an RDD
- Scheduler examines that RDD’s lineage graph to build a DAG of stages to execute
- Each stage contains as many pipelined transformations as possible
 - With narrow dependencies
- The boundaries of the stages are the shuffle operations
 - For wide dependencies
 - For any already computed partitions that can short circuit the computation of a parent RDD

Example of Spark job stages

Question: How many stages does this job have?

http://www.cs.colostate.edu/~cs535
Example of Spark job stages

- Stages are split whenever the shuffle phases occur.
- Stages 1, 2, and 3.
- RDD A, B, C, D, E, F, G.
- GroupByKey, map, union, collect.

Default FIFO scheduler

- By default, Spark’s scheduler runs jobs in FIFO fashion.
- First job gets the first priority on all available resources.
- Then the second job gets the priority, etc.
- As long as the resource is available, jobs in the queue will start right away.

Fair Scheduler

- Assigns tasks between jobs in a “round robin” fashion.
- All jobs get a roughly equal share of cluster resources.
- Short jobs that were submitted when a long job is running can start receiving resources right away.
- Good response times, without waiting for the long job to finish.
- Best for multi-user settings.

Fair Scheduler Pools

- Supports grouping jobs into pools.
 - With different options (e.g., weights).
 - “High-priority” pool for more important jobs.
- This approach is modeled after the Hadoop Fair Scheduler.
 - Default behavior of pools.
 - Each pool gets an equal share of the cluster.
 - Inside each pool, jobs run in FIFO order.
 - If the Spark cluster creates one pool per user.
 - Each user will get an equal share of the cluster.
 - Each user’s queries will run in order.

Understanding Closures

- To execute jobs, Spark breaks up the processing of RDD operations into tasks to be executed by an executor.
- Prior to execution, Spark computes the task’s closure.
- The closure is those variables and methods that must be visible for the executor to perform its computations on the RDD.
- This closure is serialized and sent to each executor.

In-Memory Cluster Computing: Apache Spark

Closures

http://www.cs.colostate.edu/~cs535
Understanding Closures

- How many different counters are in this example code?

```javascript
1: var counter = 0
2: var rdd = sc.parallelize(data)
3: // Wrong: Don't do this!
4: rdd.foreach(x => counter += x)
5: println("Counter value: " + counter)
```

- `counter` (in line 5) is referenced within the `foreach` function, it's no longer the `counter` (in line 1) on the driver node
- `counter` (in line 1) will still be zero
- In local mode, in some circumstances the `foreach` function will actually execute within the same JVM as the driver
- `counter` may be actually updated

Solutions?

- Closures (e.g. loops or locally defined methods) should not be used to mutate some global state
- Spark does not define or guarantee the behavior of mutations to objects referenced from outside the closures
- Accumulator provides a mechanism for safely updating a variable when execution is split up across worker nodes in a cluster

Accumulators

- Variables that are only “added” to through an associative and commutative operation
 - Efficiently supported in parallel
- Used to implement counters (as in MapReduce) or sums

```scala
scala> val accum = sc.longAccumulator("My Accumulator")
accum: org.apache.spark.util.LongAccumulator = LongAccumulator(id: 0, name: Some(My Accumulator), value: 0)
scala> sc.parallelize(Array(1, 2, 3, 4)).foreach(x => accum.add(x))...
10/09/29 18:41:08 INFO SparkContext: Tasks finished in 0.347350 s
scala> accum.value
res2: Long = 10
```

Accumulators

- Spark natively supports accumulators of type Long, and programmers can add support for new types

```scala
// Suppose that we have MyVector class representing mathematical vectors
class MyVector
  | ...;

// Then, create an Accumulator of this type:
val myVectorAcc = new VectorAccumulatorV2[MyVector, MyVector]
```

Accumulators

- If accumulators are created with a name, they will be displayed in Spark's UI

http://www.cs.colostate.edu/~cs535

Spring 2020 Colorado State University
Accumulators

- Accumulator updates performed inside actions only
- Spark guarantees that each task's update to the accumulator will only be applied once
- Restarted tasks will not update the value

```scala
val accum = sc.longAccumulator
data.map { x => accum.add(x) }  // Here, accum is still 0 because no actions have caused the map operation to be computed.
```