Regularization and model selection

Chapter 4



Regularization

The cure for overfitting - reqularization
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Regularization

How does it work?
Constrains the model so it cannot fit the noise

Potential side effect: if it cannot fit the noise, can it fit the
target function?

Introduces bias and reduces variance, so that (hopefully) out-
of-sample error is lower



Constraining the model

Let's penalize large weights




One effect: increased bias

> g(z) > g(z)
sin() sin(z)
X T
no regularization regularization

bias = 0.21 bias = 0.23



Second effect: dramatic reduction in variance

> g(x) > g(z)
sin(z) sin(z)
i X
no regularization regularization
bias = (.21 bias = 0.23

var = 1.69 var = 0.33



Constraining the complexity of the model
Replace E;, with:

Bunlh) = Bulh) + £9(h)

_ Regularization term
A regularization constant

Equ is a better proxy for E,, than E;,



Choosing a regularizer

We want to constraint the learned function in the direction of
the target function.

Intuition: noise is hon-smooth

Common choice for the augmented in-sample-error:

Eoug(W) = Eip (W) + AwTw

weight decay reqularizer



Is there an optimal value for A?

The behavior of E_; as a function of the regularization
parameter for varying levels of noise:
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Is there an optimal value for A?
Minimizing Eaug(W) = Eip (W) + AwTw

A=0 A = 0.0001 A =0.01 A=1

Overfitting — — Underfitting
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Regularized least-squares

Ridge regression:

w" = argmin(y — Xw)T(y — Xw) —I—éHWH2
w 2
= (XTX + )\I)_lXTy

The regularization term controls the size of the components of
the weight vector.

There is a tradeoff between fitting (the error term) and
regularization. The regularization terms can therefore prevent
overfitting. The parameter A controls this tradeoff.

Many ML methods can be expressed as solution to a criterion of
the form:

error term + reqularization term
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The effect of the regularization parameter

ngght vector coefficients as a function of the regularization parameter
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Each curve is the maghitude of the weight vector associated with a given feature.
Computed on the scaled version of the "heart” dataset.
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The effect of the regularization parameter

ngght vector coefficients as a function of the regularization parameter
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As the regularization parameter increases, w; shrinks toward O
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Assighment 2

Explore the effect of regularization with least-squares
regression.
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The validation set

How do we choose the value of the reqgularization parameter?

We take a sneak peak at E,; using a validation sef.

| K
On a validation set (x1,%1), - , (XK, YK ), the error is Eyi(h) = I7e Ze(h(xk)ayk)
k=1
Propertiesof E,,, g [E(R)] = e ZE e(h(xk),yr)| = Eou(h)
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Choosing the size of the validation set

Given the data set D = (x1,v1), " , (XN, YN)

K points — validation N — K points — training
D o7 .
val train

O(\/%): Small K =— bad estimate

Large K — !

Rule of thumb: use 20% of the data for validation
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Choosing the size of the validation set

-

Expected Eyy

10 20 30
Size of Validation Set, K

When the validation set is large, the estimate goes up because
of a small fraining set
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Using the validation set

The validation set is used to get estimates that allow us to
choose a value for the reqularization parameter.
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ol b, o
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Using the validation set

The validation set is used to get estimates that allow us to
choose a value for the reqularization parameter.
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Using the validation set

The validation set is used to get estimates that allow us to
choose a value for the reqularization parameter.
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Using the validation set

M models Hy, ..., Hu

Hi Ho Har

Use Diyain to learn g, for each model Dirain i i i

. A i i i

Evaluate g, using Dy g g5 G
—\. Dval

Ey, = FEwu(g,); m=1,...,M i i i
A

Pick model ™ = m* with smallest E,, Ev B o By

At the end: train a model on all
the data using the parameters of

o ’ 1
v



Bias

The error estimates using the validation set optimistic
estimates of E_ !

We selected the model H,,,+ using Dy,

E..1(g, «) is a biased estimate of Eo(g, «)
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Bias

The error estimates using the validation set optimistic
estimates of E_ !

We selected the model H,,,+ using Dy,
E..1(g, «) is a biased estimate of Eo(g, «)

So you need to have a separate test set.

Training set: totally contaminated
Validation set: slightly contaminated
Test set: “clean”

cted Error
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We have a dilemma...

Eout(g)% OUt(g_)% Val(g )
(small K) (large K)

Can we have K both large and small?
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Leave-one-out errors

Extreme case: K=1
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The leave-one-out estimate

Extreme case: K=1
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Theorem. E., is an unbiased estimate of Eg (N — 1).

N

Expected Eout when learning with N — 1 points.



Cross validation

The leave-one-out estimate is expensive to computel

Cross validation:

Q

Q

Randomly partition the data into k parts (“folds").

Set one fold aside for evaluation and train a model on the
remaining k-1 folds and evaluate it on the held-out fold.

Repeat until each fold has been used for evaluation

D
Di. Dy Ds Dy Ds Ds D; Ds Dy Do
| | — | | | | |

train validate train

Ve
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Cross validation

The leave-one-out estimate is expensive to computel

Cross validation:

Q

Q

Randomly partition the data into k parts (“folds").

Set one fold aside for evaluation and train a model on the
remaining k-1 folds and evaluate it on the held-out fold.

Repeat until each fold has been used for evaluation

D
" Dy Dy D3y Dy Ds Dg D Dy Dy Dig
| | . | | | | |
train validate train

The reported error is the average over the errors for each
fold.
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Cross validation

The leave-one-out estimate is expensive to computel

Cross validation:
a Randomly partition the data into k parts ("folds").

a Set one fold aside for evaluation and train a model on the
remaining k-1 folds and evaluate it on the held-out fold.

a Repeat until each fold has been used for evaluation

D
" Dy Dy D3y Dy Ds Dg D Dy Dy Dig
| | . | | | | |
train validate train

Stratified-cross validation aims at achieving roughly the same
class distribution in each fold.
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Using cross-validation
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Measures of classifier performance

Classifier performance can be summarized by a table known as
the confusion matrix or contingency table:

predicted labels:

-1 1
-1 1439 6l
1 62 1438

true labels
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Measures of classifier performance

Let's take a closer look at the contingency table:

o predicted labels:
Q

C -1 1

?) -1 1439 61

o 1 62 1438

i)

How do we compute error from the contingency table?
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Measures of classifier performance

For binary classification problems it is customary to express the
contingency table as:

o predicted labels:
s

© -1 1

—

o -1 TN F'P

- 1 FN TP

Y

i)

TP - number of true positives
TN - number of true negatives
FP - number of false positives
FN - number of false negatives
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Measures of classifier performance

For binary classification problems it is customary to express the
contingency table as:

predicted labels:

-1 1
-1 TN FP Neg = TN+FP
1 FN TP Pos TP+FN

true labels

True positive rate/sensitivity/recall: TP / Pos
True negative rate/specificity: TN / Neg
False positive rate: FP / Neg

Precision: TP / (TP + FP)
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Measures of classifier performance

Suppose you have a dataset with very few positive examples
compared fo negative examples (unbalanced data)

A classifier that classifies every example as negative would still
attain high accuracy (this is called the majority class classifier).

Need an alternative measure of accuracy!

35



The choice of classification threshold

All the classifiers we will study provide a scoring function whose
magnitude indicates how sure we are it belongs to a given class.
For example: wTx + b

The choice of the threshold is somewhat arbitrary, and in a
given application we may prefer to ignore positive predictions
that are associated with small scores

To have a view of classifier performance that is independent of
the choice of threshold we consider the ROC curve.
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ROC curve

The ROC curve is a plot of the true positive rate as a function
of false positive rate as you vary the classification threshold

1.0
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o
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False positive rate

How does the ROC curve of a perfect classifier look like?
For a random classifier?

ROC curve computed on the heart disease dataset from the UCT repository
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ROC curves and ranking

An ROC curve is often summarized by the area under the curve

(AUC), //____,_

AUC = 0.92

o
o

True positive rate
o

O'%.O 0‘.2 O‘.4 0‘.6 O‘.8 1.0
False positive rate

AUC is essentially the probability that a positive example will
get a higher score than a negative example



ROC curves

This is also a nice way of comparing classifiers:

1.0

o
[

©
o

o
H
T

True positive rate

©
)

o
_oO
o

O‘.2 0‘.4 0‘.6 0‘.8 1.0
False positive rate



