SVMs: error, regularization and
unbalanced data

Chapter e-8
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SVM: error +regularization?

Recall that most classifiers are based on a cost function that
has the form

error term + reqularization term

Let's express the SVM optimization problem in this form.



The hinge loss

The primal form of the SVM:
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subject to: y;(WTx; +b) >1-&;, >0, 1=1,...

Let's define:
Hinge loss

FEsym (W, b) Z max(1 — y@(WTXz + b) 0)
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The SVM problem now can be written as:s
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— Zero-one loss
— Hinge loss

— Log loss

See page e-8-45 T




SVM: error + regularization
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Regularization

Regular SVM uses ||w||? as the regularizer

Another option: HWH1 — Z ‘w%‘
?

This the L, regularizer (aka Lasso), and it is known to lead to
very sparse solutions.



L, Regularization

Lasso tends to generate much sparser solutions than a
quadratic regularizer.
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The role of the soft margin parameter

SVM for the non-separable case:
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The role of the soft margin parameter

SVM for the non-separable case:
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subject to: y;(WTx; +b) >1—-¢&;, £ >0, 1=1,...,n.
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Soft margin is useful even if the data is linearly separable!



A potential problem for unbalanced data

SVM for the non-separable case:
1 n
. .. 2
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minimize [|w||” + E 1 &
1=

subject to: y;(WTx; +b) >1—-¢&;, £ >0, 1=1,...,n.

¢ Z §i is the penalty for misclassification

1=1

If there are only a few positive examples, the penalty for
misclassifying them will be small.



What happens when data is unbalanced
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The SVM is essentially ignoring the minority class!
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Solving the problem

Replace Z 3
1=1

n n
With: Cg Z &+ Co Z §i
1€pos_class 1€neg-_class

Choosing the parameters such that:

CqPos =~ Cg Neg

A choice that achieves this:

C@_OP—OS C@_CN—eg

Essentially optimizes balanced error rather than regular error
rate.
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Effect of unequal soft-margin constants

Comparing the two ways of choosing the soft-margin constant:
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Interim conclusions

SVMs:

+ Deliver a large-margin hyperplane, and in so doing can control
the effective model complexity.

+ Express the hyperplane using only a few support vectors

+ Control the sensitivity to outliers and regularize the solution
through setting C appropriately.

Coming next:
+ Nonlinearity.

These properties make SVMs one of the most useful
classification approaches
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