
SVMs: nonlinearity through kernels

Chapter 3.4, e-8

1

Non-separable data

Consider the following two datasets:

Both are not linearly separable. But there is a difference!

2

e
-C

H
A
P
T
E
R

e-8. Support Vector Machines 8.1. The Optimal Hyperplane

(a) Few noisy data. (b) Nonlinearly separable.

Figure 8.6: Non-separable data (reproduction of Figure 3.1).

data is not linearly separable? Figure 8.6 (reproduced from Chapter 3) il-
lustrates the two types of non-separability. In Figure 8.6(a), two noisy data
points render the data non-separable. In Figure 8.6(b), the target function is
inherently nonlinear.

For the learning problem in Figure 8.6(a), we prefer the linear separator,
and need to tolerate the few noisy data points. In Chapter 3, we modified the
PLA into the pocket algorithm to handle this situation. Similarly, for SVMs,
we will modify the hard-margin SVM to the soft-margin SVM in Section 8.4.
Unlike the hard margin SVM, the soft-margin SVM allows data points to
violate the cushion, or even be misclassified.

To address the other situation in Figure 8.6(b), we introduced the nonlinear
transform in Chapter 3. There is nothing to stop us from using the nonlinear
transform with the optimal hyperplane, which we will do here.

To render the data separable, we would typically transform into a higher
dimension. Consider a transform Φ : Rd → Rd̃. The transformed data are

zn = Φ(xn).

After transforming the data, we solve the hard-margin SVM problem in the
Z space, which is just (8.4) written with zn instead of xn:

minimize:
b̃,w̃

1

2
w̃tw̃ (8.9)

subject to: yn
(

w̃tzn + b̃
)

≥ 1 (n = 1, · · · , N),

where w̃ is now in Rd̃ instead of Rd (recall that we use tilde for objects in
Z space). The optimization problem in (8.9) is a QP-problem with d̃ + 1

c© AM
L Abu-Mostafa, Magdon-Ismail, Lin: Jan-2015 e-Chap:8–19

Non-separable data

Consider the following two datasets:

 Linear with outliers Nonlinear

3

e
-C

H
A
P
T
E
R

e-8. Support Vector Machines 8.1. The Optimal Hyperplane

(a) Few noisy data. (b) Nonlinearly separable.

Figure 8.6: Non-separable data (reproduction of Figure 3.1).

data is not linearly separable? Figure 8.6 (reproduced from Chapter 3) il-
lustrates the two types of non-separability. In Figure 8.6(a), two noisy data
points render the data non-separable. In Figure 8.6(b), the target function is
inherently nonlinear.

For the learning problem in Figure 8.6(a), we prefer the linear separator,
and need to tolerate the few noisy data points. In Chapter 3, we modified the
PLA into the pocket algorithm to handle this situation. Similarly, for SVMs,
we will modify the hard-margin SVM to the soft-margin SVM in Section 8.4.
Unlike the hard margin SVM, the soft-margin SVM allows data points to
violate the cushion, or even be misclassified.

To address the other situation in Figure 8.6(b), we introduced the nonlinear
transform in Chapter 3. There is nothing to stop us from using the nonlinear
transform with the optimal hyperplane, which we will do here.

To render the data separable, we would typically transform into a higher
dimension. Consider a transform Φ : Rd → Rd̃. The transformed data are

zn = Φ(xn).

After transforming the data, we solve the hard-margin SVM problem in the
Z space, which is just (8.4) written with zn instead of xn:

minimize:
b̃,w̃

1

2
w̃tw̃ (8.9)

subject to: yn
(

w̃tzn + b̃
)

≥ 1 (n = 1, · · · , N),

where w̃ is now in Rd̃ instead of Rd (recall that we use tilde for objects in
Z space). The optimization problem in (8.9) is a QP-problem with d̃ + 1

c© AM
L Abu-Mostafa, Magdon-Ismail, Lin: Jan-2015 e-Chap:8–19

Transform your features!

Map your data into “Z-space” using a nonlinear function

4

Mechanics of the Feature Transform I

Transform the data to a Z-space in which the data is separable.

x1

x
2

0

−→

z1 = x21

z 2
=
x
2 2

x =







1

x1

x2






−→ z = Φ(x) =







1

x21
x22






=







1

Φ1(x)

Φ2(x)







c© AML Creator: Malik Magdon-Ismail Nonlinear Transforms: 6 /17 Feature transform II: classify in Z-space −→

Mechanics of the Feature Transform I

Transform the data to a Z-space in which the data is separable.

x1

x
2

0

−→

z1 = x21

z 2
=
x
2 2

x =







1

x1

x2






−→ z = Φ(x) =







1

x21
x22






=







1

Φ1(x)

Φ2(x)







c© AML Creator: Malik Magdon-Ismail Nonlinear Transforms: 6 /17 Feature transform II: classify in Z-space −→

Classification in Z-space

In Z-space the data can be linearly separated:

5

Mechanics of the Feature Transform II

Separate the data in the Z-space with w̃:

g̃(z) = sign(w̃tz)

−→

c© AML Creator: Malik Magdon-Ismail Nonlinear Transforms: 7 /17 Feature transform III: bring back to X -space −→

Mechanics of the Feature Transform II

Separate the data in the Z-space with w̃:

g̃(z) = sign(w̃tz)

−→

c© AML Creator: Malik Magdon-Ismail Nonlinear Transforms: 7 /17 Feature transform III: bring back to X -space −→

Classification in Z-space

a

6

Mechanics of the Feature Transform III

To classify a new x, first transform x to Φ(x) ∈ Z-space and classify there with g̃.

g(x) = g̃(Φ(x))

= sign(w̃tΦ(x))
g̃(z) = sign(w̃tz)

←−

c© AML Creator: Malik Magdon-Ismail Nonlinear Transforms: 8 /17 Summary of nonlinear transform −→

Classification in Z-space

What can we say about the dimensionality of the Z-space as a
function of the dimensionality of the data?

7

Must Choose Φ BEFORE Your Look at the Data

After constructing features carefully, before seeing the data . . .

. . . if you think linear is not enough, try the 2nd order polynomial transform.







1

x1

x2






= x −→ Φ(x) =























1

Φ1(x)

Φ2(x)

Φ3(x)

Φ4(x)

Φ5(x)























=























1

x1

x2

x21
x1x2

x22























c© AML Creator: Malik Magdon-Ismail Nonlinear Transforms: 12 /17 The polynomial transform −→

The polynomial Z-space

We can choose higher order polynomials:

What are the potential effects of increasing the order of the
polynomial?

8

The General Polynomial Transform Φk

We can get even fancier: degree-k polynomial transform:

Φ1(x) = (1, x1, x2),

Φ2(x) = (1, x1, x2, x
2
1, x1x2, x

2
2),

Φ3(x) = (1, x1, x2, x
2
1, x1x2, x

2
2, x

3
1, x

2
1x2, x1x

2
2, x

3
2),

Φ4(x) = (1, x1, x2, x
2
1, x1x2, x

2
2, x

3
1, x

2
1x2, x1x

2
2, x

3
2, x

4
1, x

3
1x2, x

2
1x

2
2, x1x

3
2, x

4
2),

...

– Dimensionality of the feature space increases rapidly (dvc)!

– Similar transforms for d-dimensional original space.

– Approximation-generalization tradeoff
Higher degree gives lower (even zero) Ein but worse generalization.

c© AML Creator: Malik Magdon-Ismail Nonlinear Transforms: 13 /17 Be carefull with nonlinear transforms −→

The polynomial Z-space

 Linear model fourth order polynomial

Feature-space dimensionality increases rapidly and with it the
complexity of the model: danger of overfitting

9

Be Careful with Feature Transforms

High order polynomial transform leads to “nonsense”.

c© AML Creator: Malik Magdon-Ismail Nonlinear Transforms: 15 /17 Digits data −→

A few potential issues…

u  Danger of overfitting
u  Better chance of obtaining linear separability
u  Computationally expensive (memory and time)

Kernels: avoid the computational expense by an implicit mapping

10

Achieving non-linear discriminant functions

Consider two dimensional data and the mapping

Let’s plug that into the discriminant function:

The resulting decision boundary is a conic section.

11

�(x) = (x2
1,
p
2x1x2, x

2
2)

|

w

|
�(x) = w1x

2
1 +

p
2w2x1x2 + w3x

2
2

How to avoid the overhead of explicit mapping

Suppose the weight vector can be expressed as:

The discriminant function is then:

And using our nonlinear mapping:

Turns out we can often compute the dot product without
explicitly mapping the data into a high dimensional feature
space!

12

w =
nX

i=1

↵ixi

f(x) =
X

i

↵ix
|
i x+ b

f(x) =
X

i

↵i�(xi)
|�(x) + b

w

|�(x) + b

w

|
x+ b

Example

Let’s go back to the example

and compute the dot product

Do we need to perform the mapping explicitly?

13

�(x) = (x2
1,
p
2x1x2, x

2
2)

|

�(x)|�(z) = (x2
1,
p
2x1x2, x

2
2)

|(z21 ,
p
2z1z2, z

2
2)

= x

2
1z

2
1 + 2x1x2z1z2 + x

2
2z

2
2

= (x|
z)2

Example

Let’s go back to the example

and compute the dot product

Do we need to perform the mapping explicitly?

NO! Squaring the dot product in the original space has the same
effect as computing the dot product in feature space.

14

�(x) = (x2
1,
p
2x1x2, x

2
2)

|

�(x)|�(z) = (x2
1,
p
2x1x2, x

2
2)

|(z21 ,
p
2z1z2, z

2
2)

= x

2
1z

2
1 + 2x1x2z1z2 + x

2
2z

2
2

= (x|
z)2

Kernels

Definition: A function k(x, z) that can be expressed as a dot
product in some feature space is called a kernel.

In other words, k(x, z) is a kernel if there exists
such that

Why is this interesting?

If the algorithm can be expressed in terms of dot products, we
can work in the feature space without performing the mapping
explicitly!

15

k(x, z) = �(x)|�(z)

� : X 7! F

The dual SVM problem

The dual SVM formulation depends on the data through dot
products, and so can be expressed using kernels. Replace

with:

16

maximize

↵

nX

i=1

↵i �
1

2

nX

i=1

nX

j=1

↵i↵jyiyjx
|
i xj

subject to: 0  ↵i  C,
nX

i=1

↵iyi = 0

maximize

↵

nX

i=1

↵i �
1

2

nX

i=1

nX

j=1

↵i↵jyiyjk(xi,xj)

subject to: 0  ↵i  C,
nX

i=1

↵iyi = 0

Standard kernel functions

The linear kernel

Homogeneous polynomial kernel

Polynomial kernel

Gaussian kernel

17

k(x, z) = x

|
z

k(x, z) = (x|
z)d

k(x, z) = (x|
z+ 1)d

k(x, z) = exp(��||x� z||2)

Standard kernel functions

The linear kernel

Homogeneous polynomial kernel

Polynomial kernel

Gaussian kernel

18

k(x, z) = x

|
z

k(x, z) = (x|
z)d

k(x, z) = (x|
z+ 1)d

k(x, z) = exp(��||x� z||2)

Feature space:

Original features

All monomials of
degree d

All monomials of
degree less than d

Infinite dimensional

Demo

Using polynomial kernel:

19

k(x, z) = (x|
z+ 1)d

Demo
Using the Gaussian kernel:

20

k(x, z) = exp(��||x� z||2)

Input: labeled data D in homogeneous coordinates
Output: weight vector w

w = 0
converged = false
while not converged :
 converged = true
 for i in 1,…,|D| :
 if xi is misclassified update w and set
 converged=false

“Kernelizing” the perceptron algorithm

Recall the primal version of the perceptron algorithm:

What do you need to change to express it in the dual?
(I.e. express the algorithm in terms of the alpha coefficients)

21

w

0 = w + ⌘yixi

Input: labeled data D in homogeneous coordinates
Output: weight vector α

α = 0
converged = false
while not converged :
 converged = true
 for i in 1,…,|D| :
 if xi is misclassified update α and set
 converged=false

“Kernelizing” the perceptron algorithm

22

w =
nX

i=1

↵ixi

Input: labeled data D in homogeneous coordinates
Output: weight vector α

α = 0
converged = false
while not converged :
 converged = true
 for i in 1,…,|D| :
 if xi is misclassified update α and set
 converged=false

“Kernelizing” the perceptron algorithm

23

↵i ! ↵i + ⌘yi

w

0 = w + ⌘yixi

The update

Is equivalent to:

Linear regression revisited

The sum-squared cost function:

The optimal solution satisfies:

If we express w as:

We get:

24

X

i

(yi �w

|
xi)

2 = (y �Xw)|(y �Xw)

X|Xw = X|y

w =
nX

i=1

↵ixi = X

|↵

X|XX|↵ = X|y

Kernel linear regression

We now get that α satisfies:

Compare with:

Which is harder to find? What have we gained?

25

XX|↵ = y

X|Xw = X|y

The kernel matrix

 The covariance matrix (d x d)

 Matrix of dot products associated with a dataset (n x n).

Can replace it with a matrix K such that:

This is the kernel matrix associated with a dataset
a.k.a the Gram matrix

26

X|X

XX|

Kij = �(xi)
|�(xj) = k(xi,xj)

How does that matrix look like?

Kernel matrix for gene
expression data in yeast:

27

Properties of the kernel matrix

The kernel matrix:

q  Symmetric (and therefore has real eigenvalues)
q  Diagonal elements are positive
q  Every kernel matrix is positive semi-definite, i.e.

q  Corollary: the eigenvalues of a kernel matrix are positive

28

Kij = �(xi)
|�(xj) = k(xi,xj)

x

|Kx � 0 8x

Standard kernel functions

The linear kernel

Homogeneous polynomial kernel

Polynomial kernel

Gaussian kernel (aka RBF kernel)

How do we even know that the Gaussian is a valid kernel?

29

k(x, z) = x

|
z

k(x, z) = (x|
z)d

k(x, z) = (x|
z+ 1)d

k(x, z) = exp(��||x� z||2)

Feature space:

Original features

All monomials of
degree d

All monomials of
degree less than d

Infinite dimensional

Some tricks for constructing kernels

Let K(x,z) be a kernel function

If a > 0 then aK(x,z) is a kernel

30

Some tricks for constructing kernels

Sums of kernels are kernels:

Let K1 and K2 be kernel functions then K1 + K2 is a kernel

What is the feature map that shows this?

31

Some tricks for constructing kernels

Sums of kernels are kernels:

Let K1 and K2 be kernel functions then K1 + K2 is a kernel

Feature map: concatenation of the underlying feature maps

32

Some tricks for constructing kernels

Products of kernels are kernels:

Let K1 and K2 be kernel functions then K1 K2 is a kernel

33

Some tricks for constructing kernels

Products of kernels are kernels:

Let K1 and K2 be kernel functions then K1 K2 is a kernel

Construct a feature map that contains all products of pairs of
features

34

The cosine kernel

If K(x,z) is a kernel then

is a kernel

35

K

0(x, z) =
K(x, z)p

K(x, x)K(z, z)

The cosine kernel

If K(x,z) is a kernel then

is a kernel

This kernel is equivalent to normalizing each example to have
unit norm in the feature space associated with the kernel.
This kernel is the cosine in the feature space associated with
the kernel K:

36

K

0(x, z) =
K(x, z)p

K(x, x)K(z, z)

cos(�(x),�(z)) =

�(x)

|
�(z)

||�(x)|| ||�(z)|| =
�(x)

|
�(z)p

�(x)

|
�(x)�(z)

|
�(z)

Infinite sums of kernels

Theorem: A function
with a series expansion

is a kernel iff for all n.

37

K(x, z) = K(x|
z)

K(t) =
1X

n=0

ant
n

an � 0

Infinite sums of kernels

Theorem: A function
with a series expansion

is a kernel iff for all n.

Corollary: is a kernel

38

K(x, z) = K(x|
z)

K(t) =
1X

n=0

ant
n

an � 0

K(x, z) = exp (2�x|
z)

Infinite sums of kernels

Theorem: A function
with a series expansion

is a kernel iff for all n.

Corollary: is a kernel

Corollary: is a kernel

i.e. the Gaussian kernel is the cosine kernel of the exponential
kernel

39

K(x, z) = K(x|
z)

K(t) =
1X

n=0

ant
n

an � 0

K(x, z) = exp (2�x|
z)

k(x, z) = exp(��||x� z||2)

K

0(x, z) =
K(x, z)p

K(x, x)K(z, z)

exp(��||x� z||2) = exp (�� (x|
x+ z

|
z) + 2� (x|

z))

