SVMs: nonlinearity through kernels

Chapter 3.4, e-8
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Non-separable data

Consider the following two datasets:

Both are not linearly separable. But there is a differencel



Non-separable data

Consider the following two datasets:

Linear with outliers Nonlinear



Transform your features!

Map your data into "Z-space” using a nonlinear function
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Classification in Z-space

In Z-space the data can be linearly separated: -~




Classification in Z-space

g(x) = i((I)(X)) g(z) = sign(w"'z)




Classification in Z-space
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What can we say about the dimensionality of the Z-space as a
function of the dimensionality of the data?



The polynomial Z-space

We can choose higher order polynomials:

(I)1<X> — (1 $1,ZC2>
P — (1 2 2
Q(X) — ( 7x17x27$17x1$27$2)
2 2 3 .2 2 3
$3(x) = (1,21, 9, 7, T1T2, T3, T, TTo, T1T5, T'),
2 3 .2 2 3 .4 .3 22 3 4
®4(x) = (1,21, %2, T}, T1T2, T3, T3, T-Ta, T1T5, T3, T, T2, T-T5, T1T5, T

What are the potential effects of increasing the order of the
polynomial?
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The polynomial Z-space

Linear model

fourth order polynomial
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Feature-space dimensionality increases rapidly and with it the
complexity of the model: danger of overfitting



A few potential issues...

+ Danger of overfitting
+ Better chance of obtaining linear separability
+ Computationally expensive (memory and time)

Kernels: avoid the computational expense by an implicit mapping
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Achieving non-linear discriminant functions

Consider two dimensional data and the mapping
gb(X) — ($%7 \/§$1x2, ajg)T
Let's plug that into the discriminant function:
wTlo(x) = wlx% + V2wox e + ngg

The resulting decision boundary is a conic section.
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How to avoid the overhead of explicit mapping

Suppose the weight vector can be expressed as:

W = E ;X

The discriminant function is ’rhen

wix+b :Zaixgx—l—b

And using our nonlinear mapping:
WT¢ Z CV’L¢ Xi TQS )

Turns out we can often compute the dot product without
explicitly mapping the data into a high dimensional feature
spacel
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Example

Let's go back to the example
$(x) = (27, V2z129,73)T

and compute the dot product

6(x)T0(2) = (], V2122, 23)T (27, V2212, 23)

22 2.2
= x72] + 2T1792129 + T525
= (xTz)?

Do we need to perform the mapping explicitly?
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Example

Let's go back to the example
$(x) = (27, V2z129,73)T

and compute the dot product

6(x)T0(2) = (], V2122, 23)T (27, V2212, 23)

22 2.2
= x72] + 2T1792129 + T525
= (xTz)?

Do we need to perform the mapping explicitly?

NO! Squaring the dot product in the original space has the same
effect as computing the dot product in feature space.

14



Kernels

Definition: A function k(x, z) that can be expressed as a dot
product in some feature space is called a kernel.

In other words, Kk(x, z) is a kernel if there exists ¢ : X — F
such that T

k(x,z) = ¢(x)7¢(z)
Why is this interesting?

If the algorithm can be expressed in terms of dot products, we
can work in the feature space without performing the mapping
explicitly!

15



The dual SVM problem

The dual SVM formulation depends on the data through dot
products, and so can be expressed using kernels. Replace

n

1
maximize »  a; — E E QY YK X
(8

n

subject to: 0 < a; < C, Zaiyi =3
i=1

7,1]1

with:

subject to: 0 < o; < C, Zoz@-yi =0
i=1
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Standard kernel functions

The linear kernel

k(x,z) =x"z

Homogeneous polynomial kernel

k(x,z) = (x7z)¢

Polynomial kernel
k(x,z) = (x"z

Gaussian kernel

1)¢

k(x,2) = exp(—7[x — z[*)
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Standard kernel functions

The linear kernel Feature space:
k(X; Z) =x'z Original features
Homogeneous polynomial kernel
k(x.2) = (x72)" Al el o

Polynomial kernel
_ T d All monomials of
k(Xa Z) — (X Z 1) degree less than d

Gaussian kernel

k(x,z) = exp(—v||x — z||*)  nfinite dimensional
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Demo

Using polynomial kernel:

1.0 linear kernel polynomial degree 2 polynomial degree 5
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k(x,2z) = (xTz + 1)¢



Demo

Using the Gaussian kernel: k(X, Z) — eXp(—’Y| ’X — Z| |2)

gaussian, gamma=0.1 gaussian, gamma=1
I
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"Kernelizing" the perceptron algorithm

Recall the primal version of the perceptron algorithm:

Input: labeled data D in homogeneous coordinates
Output: welght vector w

w =20
converged = false
while not converged
converged = true
for 1 in 1,..,|D|
1f x; 1s misclassified update w and set

converged=false W/ — W _|_ 77sz@

What do you need to change to express it in the dual?
(I.e. express the algorithm in ferms of the alpha coefficients)

21



"Kernelizing" the perceptron algorithm

Input: labeled data D in homogeneous coordinates
Output: welght vector o«

a =0
converged = false n
while not converged : W — E :O%X@
converged = true —
1=

for 1 in 1,..,|D]
1f x; 1s misclassified update a and set

converged=false
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"Kernelizing" the perceptron algorithm

Input: labeled data D in homogeneous coordinates
Output: welght vector «

a = 0
converged = false
while not converged
converged = true
for 1 in 1,..,|D]
1f X, 1s misclassified update a and set

converged=false

The update  O¢; — QO + NY;

Is equivalent to:
/
W =W 1 NYiX;
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Linear regression revisited

The sum-squared cost function:

D (i —wx)? = (y — Xw)T(y — Xw)
?
The optimal solution satisfies:
XTXw = XTy

If we express w as:

We gef: XTXXTa =XTy
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Kernel linear regression

We now get that a satisfies:

XXTa =y

Compare with:

XTXw = XTy

Which is harder to find? What have we gained?
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The kernel matrix
X TX The covariance matrix (d x d)
XXT Matrix of dot products associated with a dataset (n x n).
Can replace it with a matrix K such that:

Kij = o(xi)To(x5) = k(xi,x;)

This is the kernel matrix associated with a dataset
a.k.a the Gram matrix
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How does that matrix look like?

Kernel matrix for gene
expression data in yeast:

400
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Properties of the kernel matrix

The kernel matrix:
Kij = ¢(x:)To(x;5) = k(x;,%;)

a  Symmetric (and therefore has real eigenvalues)
a Diagonal elements are positive
a Every kernel matrix is positive semi-definite, i.e.

xTKx >0 Vx

a Corollary: the eigenvalues of a kernel matrix are positive
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Standard kernel functions

The linear kernel Feature space:
k(X; Z) =x'z Original features
Homogeneous polynomial kernel
k(x.2) = (x72)" Al el o

Polynomial kernel
_ T d All monomials of
k(Xa Z) — (X Z 1) degree less than d

Gaussian kernel (aka RBF kernel)

k(x,z) = exp(—v||x — z||*)  nfinite dimensional

How do we even know that the Gaussian is a valid kernel?
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Some tricks for constructing kernels

Let K(x,z) be a kernel function

If a> 0 then aK(x,z) is a kernel
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Some tricks for constructing kernels

Sums of kernels are kernels:
Let K; and K, be kernel functions then K; + K, is a kernel

What is the feature map that shows this?
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Some tricks for constructing kernels
Sums of kernels are kernels:
Let K; and K, be kernel functions then K; + K, is a kernel

Feature map: concatenation of the underlying feature maps
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Some tricks for constructing kernels

Products of kernels are kernels:

Let K; and K, be kernel functions then K; K, is a kernel
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Some tricks for constructing kernels

Products of kernels are kernels:
Let K; and K, be kernel functions then K; K, is a kernel

Construct a feature map that contains all products of pairs of
features
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The cosine kernel

If K(x,z) is a kernel then
K(x,z2)
VE(z,2)K(z, 2)

K'(z,z) =

is a kernel
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The cosine kernel

If K(x,z) is a kernel then
K(x,z2)
VE(z,2)K(z, 2)

K'(z,z) =

is a kernel

This kernel is equivalent to normalizing each example to have
unit norm in the feature space associated with the kernel.

This kernel is the cosine in the feature space associated with
the kernel K:

¢(x)To(2) ( )ch(Z)

cos(¢(x), P(z)) =

lo@IIeEN — /é@)Té(x) o(=)To(=)

N
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Infinite sums of kernels

Theorem: A function K(x,z) = K(x"z)

with a series expansion
o

K(t) =) apt"

n=0

is a kernel iff a,, > 0 for alln.
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Infinite sums of kernels

Theorem: A function K(x,z) = K(x"z)

with a series expansion
o

K(t) =) apt"

n=0

is a kernel iff a,, > 0 foralln.

Corollary: K(X, z) — exp (2’}/XTZ) is a kernel
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Infinite sums of kernels

Theorem: A function K(x,z) = K(x"z)

with a series expansion
o

K(t) =) apt"

n=0

is a kernel iff a,, > 0 foralln.
Corollary: K (x,z) = exp (2yx"z) is akernel

Corollary: k(x,z) = exp(—||x — z||?) is a kernel
exp(—7l[x — z||*) = exp (=7 (x"x + 27z) + 27 (x72))

i.e. tThe Gaussian kernel is the cosine kernel of the exponential
kernel K(x,z)

Kz, z) = \/K(a:, z)K(z, 2)
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