Warning: Declaration of action_plugin_tablewidth::register(&$controller) should be compatible with DokuWiki_Action_Plugin::register(Doku_Event_Handler $controller) in /s/bach/b/class/cs545/public_html/fall16/lib/plugins/tablewidth/action.php on line 93
Warning: Declaration of syntax_plugin_mathjax_protecttex::render($mode, &$renderer, $data) should be compatible with DokuWiki_Syntax_Plugin::render($format, Doku_Renderer $renderer, $data) in /s/bach/b/class/cs545/public_html/fall16/lib/plugins/mathjax/syntax/protecttex.php on line 15 assignments:assignment4 [CS545 fall 2016]
Next, we will compare the accuracy of an SVM with a Gaussian kernel on the raw data with accuracy obtained when the data is normalized to be unit vectors (the values of the features of each example are divided by its norm).
Next, we will compare the accuracy of an SVM with a Gaussian kernel on the raw data with accuracy obtained when the data is normalized to be unit vectors (the values of the features of each example are divided by its norm).
This is different than standardization which operates at the level of individual features. Normalizing to unit vectors is more appropriate for this dataset as it is sparse, i.e. most of the features are zero.
This is different than standardization which operates at the level of individual features. Normalizing to unit vectors is more appropriate for this dataset as it is sparse, i.e. most of the features are zero.
-
Perform your comparison by comparing the accuracy measured by the area under the ROC curve in five-fold cross validation.
+
Perform your comparison by comparing the accuracy measured by the area under the ROC curve in five-fold cross validation, where the classifier/kernel parameters are chosen by
-
The optimal values of kernel parameters should be measured by cross-validation, where the optimal SVM/kernel parameters are chosen using grid search on the training set of each fold.
+
by nested cross-validation, i.e. using grid search on the training set of each fold.
Use the scikit-learn [[http://scikit-learn.org/stable/tutorial/statistical_inference/model_selection.html
Use the scikit-learn [[http://scikit-learn.org/stable/tutorial/statistical_inference/model_selection.html
| grid-search]] class for model selection.
| grid-search]] class for model selection.
assignments/assignment4.txt · Last modified: 2016/10/11 18:16 by asa