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Regularization and model selection 

Chapter 4 
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Reminder:  bias vs variance, overfitting 
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An Illustration of Overfitting on a Simple Example

Quadratic f

5 data points

A little noise (measurement error)

5 data points→ 4th order polynomial fit

x

y

Data
Target
Fit

Classic overfitting: simple target with excessively complex H.

Ein ≈ 0; Eout ≫ 0

The noise did us in. (why?)

c⃝ AML Creator: Malik Magdon-Ismail Overfitting: 5 /24 What is overfitting? −→
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= 0.50 = 0.25 = 0.21 = 1.69

⃝ AML

Let’s Repeat the Experiment Many Times

x

y
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y

For each data set D, you get a different gD.

So, for a fixed x, gD(x) is random value, depending on D.

c⃝ AML Creator: Malik Magdon-Ismail Approximation Versus Generalization: 15 /22 Average behavior −→

Regularization 

The cure for overfitting - regularization 
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⃝ AML

Without regularization With regularization 

Regularization 

How does it work? 
 
v  Constrains the model so it cannot fit the noise 
v  Potential side effect:  if it cannot fit the noise, can it 

fit the target function? 
v  Introduces bias and reduces variance, so that 

(hopefully) out-of-sample error is lower 
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Constraining the model 

Let’s penalize large weights 
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Constraining the Model: Does it Help?

x

y

x

y
constrain weights to be smaller

. . . and the winner is:

c⃝ AML Creator: Malik Magdon-Ismail Regularization: 6 /30 bias−→

One effect:  increased bias 
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Bias Goes Up A Little

x

y ḡ(x)

sin(x)

x

y ḡ(x)

sin(x)

no regularization

bias = 0.21

regularization

bias = 0.23 ← side effect

(Constant model had bias=0.5 and var=0.25.)
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Bias Goes Up A Little

x

y ḡ(x)

sin(x)
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y ḡ(x)

sin(x)

no regularization

bias = 0.21

regularization

bias = 0.23 ← side effect

(Constant model had bias=0.5 and var=0.25.)
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Second effect:  dramatic reduction in variance 
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Variance Drop is Dramatic!

x

y ḡ(x)

sin(x)

x

y ḡ(x)

sin(x)

no regularization

bias = 0.21
var = 1.69

regularization

bias = 0.23 ← side effect

var = 0.33 ← treatment

(Constant model had bias=0.5 and var=0.25.)

c⃝ AML Creator: Malik Magdon-Ismail Regularization: 8 /30 Regularication in a nutshell −→

Variance Drop is Dramatic!
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y ḡ(x)

sin(x)

no regularization

bias = 0.21
var = 1.69

regularization

bias = 0.23 ← side effect

var = 0.33 ← treatment

(Constant model had bias=0.5 and var=0.25.)

c⃝ AML Creator: Malik Magdon-Ismail Regularization: 8 /30 Regularication in a nutshell −→

Constraining the complexity of the model 

Replace Ein with: 
 
 
 
 
 
              regularization constant 
 
Eaug is a better proxy for Eout than Ein 
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Ω = Ω(h)

E (h) = E (h) +
λ

N
Ω(h)

↓ ↓

E (h) ≤ E (h) + Ω(H)

E E E

⃝ AML

Regularization term 

Ω = Ω(h)

E (h) = E (h) +
λ

N
Ω(h)

↓ ↓

E (h) ≤ E (h) + Ω(H)

E E E

⃝ AML
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Choosing a regularizer 

We want to constrain the learned function in the direction 
of the target function. 
 
Intuition:  noise is non-smooth 
 
Common choice for the augmented in-sample-error: 
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weight decay regularizer 
Eaug(w) = Ein(w) + �w|w

Is there an optimal value for λ?    
The behavior of Eout as a function of the regularization 
parameter for varying levels of noise: 
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λ

λ

E

σ2 = 0

σ2 = 0.25

σ2 = 0.5

λ

E

Qf = 15

Qf = 30

Qf = 100

⃝ AML

Is there an optimal value for λ? 

Minimizing  
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Don’t Overdose

Minimizing Ein(w) +
λ

N
wtw with different λ’s

λ = 0 λ = 0.0001 λ = 0.01 λ = 1

x

y

Data

Target

Fit
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y

x

y
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y

Overfitting → → Underfitting

c⃝ AML Creator: Malik Magdon-Ismail Regularization: 23 /30 Overfitting and underfitting −→

Eaug(w) = Ein(w) + �w|w

�
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Regularized least-squares 

Ridge regression: 
 
 
 
 
The regularization term controls the size of the components of 
the weight vector. 
There is a tradeoff between fitting (the error term) and 
regularization.  The regularization terms can therefore prevent 
overfitting.  The parameter λ controls this tradeoff. 
 
Many ML methods can be expressed as solution to a criterion of 
the form: 

     error term + regularization term 

12 

w⇤ = argmin
w

(y �Xw)|(y �Xw) + �||w||2

w = (X|X+ �I)�1X|y
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The effect of the regularization parameter 

13 

Each curve is the magnitude of the weight vector associated with a given feature. 
Computed on the scaled version of the “heart” dataset. 

The effect of the regularization parameter 
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As the regularization parameter increases, wi shrinks toward 0 

Assignment 2 

Explore the effect of regularization with least-
squares regression. 
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The validation set 

How to choose the value of the regularization parameter? 
Take a sneak peak at Eout using a validation set! 
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Choosing the size of the validation set 

 
 
 
 
 
 
 
 
 
 
 
Rule of thumb:  use 20% of the data for validation 
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K N

D = (x1, y1), · · · , (xN, yN)
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←− K
⃝ AML

Choosing the size of the validation set 

 
 
 
 
 
 
 
 
Observations: 
 
v  As we increase the size of the validation set, the estimate 

goes up because of a small training set 
v  The uncertainty in Eval decreases as we increase K, up to a 

point, where a small training set size generates uncertainty 
in the estimate 
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Choosing K
PSfrag

Size of Validation Set, K

E
xp

ec
te
d
E

va
l

10 20 30

Rule of thumb: K∗ = N
5 .

c⃝ AML Creator: Malik Magdon-Ismail Validation and Model Selection: 8 /29 Restoring D −→

Shaded region: 
the uncertainty (variance) 
of the estimate 

Using the validation set 

The validation set is used to get estimates that allow 
us to choose a value for the regularization parameter. 
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Compute Validation Estimates for All Models

The most important use of validation

H1 H2 H3 · · · HM

−−−→

−−−→

−−−→

−−−→

g1 g2 g3 · · · gM

−−−→

−−−→

−−−→

−−−→

E1 E2 E3 · · · EM

Dtrain −−−→

Dval −−−→

c⃝ AML Creator: Malik Magdon-Ismail Validation and Model Selection: 14 /29 Pick best validation error −→

Using the validation set 

The validation set is used to get estimates that allow 
us to choose a value for the regularization parameter. 
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Pick The Best Model According to Validation Error

The most important use of validation

H1 H2 H3 · · · HM

−−−→

−−−→

−−−→

−−−→

g1 g2 g3 · · · gM

−−−→

−−−→

−−−→

−−−→

E1 E2 E3 · · · EM

Dtrain −−−→

Dval −−−→

c⃝ AML Creator: Malik Magdon-Ismail Validation and Model Selection: 15 /29 Biased Eval(gm∗) −→
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Using the validation set 

The validation set is used to get estimates that allow 
us to choose a value for the regularization parameter. 
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Application to Selecting λ

Which regularization parameter to use?

λ1,λ2, . . . ,λM.

This is a special case of model selection over M models,

(H,λ1) (H,λ2) (H,λ3) · · · (H,λM)

−−−→

−−−→

−−−→

−−−→

g1 g2 g3 · · · gM

Picking a model amounts to chosing the optimal λ

c⃝ AML Creator: Malik Magdon-Ismail Validation and Model Selection: 19 /29 Tradeoff with K −→

Using the validation set 

At the end:  train a model on 
all the data using the 
parameters of Hm*. 
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Comparing Ein and Eval for Model Selection
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c⃝ AML Creator: Malik Magdon-Ismail Validation and Model Selection: 18 /29 Selecting λ −→

D

H1 H2 HM

g1 g2 gM· · ·

· · ·

E1 · · · EM

D

D

gm∗

E2

Hm∗, Em∗)

| {z }

D

M H1, . . . ,HM

D g−m
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Em = E (g−m); m = 1, . . . ,M

m = m∗ Em

⃝ AML

Bias 

The error estimates using the validation set are 
optimistic estimates of Eout! 
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Bias 
The error estimates using the validation set are 
optimistic estimates of Eout! 
 
 
 
 
So you need to have a separate test set. 
 
Training set: totally contaminated 
Validation set:  slightly contaminated 
Test set:  “clean” 
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We have a dilemma… 

 
 
 
 
 
 
Can we have K both large and small? 

25 

K

E (g)≈
K

E (g−)≈
K

E (g−)

K

K

⃝ AML

Leave-one-out errors 

Extreme case:  K=1 
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The Leave One Our Errors

e1
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e3

x
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E[e1] = Eout(g1)

Ecv =
1

N

N∑

n=1

en

c⃝ AML Creator: Malik Magdon-Ismail Validation and Model Selection: 23 /29 CV is unbiased −→

The leave-one-out estimate 

Extreme case:  K=1 
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The Leave One Our Errors
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The Leave One Our Errors
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c⃝ AML Creator: Malik Magdon-Ismail Validation and Model Selection: 23 /29 CV is unbiased −→

The Leave One Out Error (K = 1)

e1

x
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E[e1] = Eout(g1)

−−
−−
−−
−−
−−
→

g1

. . . but it is a wild estimate

c⃝ AML Creator: Malik Magdon-Ismail Validation and Model Selection: 22 /29 Ecv −→

Cross Validation is Unbiased

Theorem. Ecv is an unbiased estimate of Ēout(N − 1).
↖

Expected Eout when learning with N − 1 points.

c⃝ AML Creator: Malik Magdon-Ismail Validation and Model Selection: 24 /29 Reliability of Ecv −→

Cross validation 

The leave-one-out estimate is expensive to compute! 
 
Cross validation: 
q  Randomly partition the data into k parts (“folds”). 
q  Set one fold aside for evaluation and train a model on the 

remaining k-1 folds and evaluate it on the held-out fold. 
q  Repeat until each fold has been used for evaluation 
 

28 

Cross Validation is Computationally Intensive

N epochs of learning each on a data set of size N − 1.

• Analytic approaches, for example linear regression with weight decay

wreg = (ZtZ + λI)−1Zty

Ecv =
1

N

N∑

n=1

(
ŷn − yn

1− Hnn(λ)

)2

H(λ) = Z(ZtZ + λI)−1Zt.

• 10-fold cross validation

D1 D2 D3 D4 D5 D6 D7 D8 D9 D10

train trainvalidate

D︷ ︸︸ ︷

c⃝ AML Creator: Malik Magdon-Ismail Validation and Model Selection: 26 /29 Restoring D −→
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Cross validation 

The leave-one-out estimate is expensive to compute! 
 
Cross validation: 
q  Randomly partition the data into k parts (“folds”). 
q  Set one fold aside for evaluation and train a model on the 

remaining k-1 folds and evaluate it on the held-out fold. 
q  Repeat until each fold has been used for evaluation 

q  The reported error is the average over the errors for each 
fold. 

 
 29 

Cross Validation is Computationally Intensive

N epochs of learning each on a data set of size N − 1.

• Analytic approaches, for example linear regression with weight decay

wreg = (ZtZ + λI)−1Zty
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(
ŷn − yn

1− Hnn(λ)

)2

H(λ) = Z(ZtZ + λI)−1Zt.

• 10-fold cross validation

D1 D2 D3 D4 D5 D6 D7 D8 D9 D10

train trainvalidate

D︷ ︸︸ ︷

c⃝ AML Creator: Malik Magdon-Ismail Validation and Model Selection: 26 /29 Restoring D −→

Cross validation 

The leave-one-out estimate is expensive to compute! 
 
Cross validation: 
q  Randomly partition the data into k parts (“folds”). 
q  Set one fold aside for evaluation and train a model on the 

remaining k-1 folds and evaluate it on the held-out fold. 
q  Repeat until each fold has been used for evaluation 

Stratified-cross validation aims at achieving roughly the same 
class distribution in each fold. 
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Cross Validation is Computationally Intensive

N epochs of learning each on a data set of size N − 1.

• Analytic approaches, for example linear regression with weight decay

wreg = (ZtZ + λI)−1Zty

Ecv =
1

N

N∑

n=1

(
ŷn − yn

1− Hnn(λ)

)2

H(λ) = Z(ZtZ + λI)−1Zt.

• 10-fold cross validation

D1 D2 D3 D4 D5 D6 D7 D8 D9 D10

train trainvalidate

D︷ ︸︸ ︷

c⃝ AML Creator: Malik Magdon-Ismail Validation and Model Selection: 26 /29 Restoring D −→

Using cross-validation 
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Restoring D

D1

D

g

g1

D2 · · ·

· · ·

Ecv

︸ ︷︷ ︸
take average

g
N

g2
(x1, y1) (x2, y2) (xN , yN )

DN

e1 e2 eN· · ·

CUSTOMER

Eout(g
(N))≤ Ēout(N − 1) ≤ Ecv +O

(
1√
N

)
.

↑
learning curve

↑
nearly independent en

Ecv can be used for model selection just as Eval, for example to choose λ.

c⃝ AML Creator: Malik Magdon-Ismail Validation and Model Selection: 27 /29 Digits −→

customer 
 

select the best 
model 

Measures of classifier performance 

Classifier performance can be summarized by a table 
known as the confusion matrix or contingency table: 
 
 
 
 
 
 
 
 
 

32 

 
    predicted labels: 
 
          -1   1   
      -1 1439   61  
       1   62 1438 
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Measures of classifier performance 

Let’s take a closer look at the contingency table: 
 
 
 
 
 
 
 
 
How do we compute error from the contingency 
table? 
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    predicted labels: 
 
          -1   1   
      -1 1439   61  
       1   62 1438 
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Measures of classifier performance 
For binary classification problems it is customary to 
express the contingency table as: 
 
 
 
 
 
 
 
TP – number of true positives 
TN – number of true negatives 
FP – number of false positives 
FN – number of false negatives 
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    predicted labels: 
 
          -1   1   
      -1  TN   FP 
       1  FN   TP 
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Measures of classifier performance 

For binary classification problems it is customary to 
express the contingency table as: 
 
 
 
 
 
 
 
True positive rate/sensitivity/recall:  TP / Pos 
True negative rate/specificity:  TN / Neg 
False positive rate:  FP / Neg 
Precision:  TP / (TP + FP) 
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    predicted labels: 
 
          -1   1   
      -1  TN   FP  Neg = TN+FP 
       1  FN   TP  Pos = TP+FN 
 t

r
u
e
 
l
a
b
e
l
s
 

Measures of classifier performance 

Suppose you have a dataset with very few positive 
examples compared to negative examples (unbalanced 
data) 
 
A classifier that classifies every example as negative 
would still attain high accuracy (this is called the majority 
class classifier). 
 
Need an alternative measure of accuracy! 
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The choice of classification threshold 

All the classifiers we will study provide a scoring function whose 
magnitude indicates how sure we are it belongs to a given class.  
For example: 
 
The choice of the threshold is somewhat arbitrary, and in a 
given application we may prefer to ignore positive predictions 
that are associated with small scores 
 
To have a view of classifier performance that is independent of 
the choice of threshold we consider the ROC curve. 

37 

f(x) = w

|
x+ b

ROC curve 

38 

The ROC curve is a plot of the true positive rate as a 
function of false positive rate as you vary the classification 
threshold 
 
 
 
 
 
 
 
 
 
How does the ROC curve of a perfect classifier look like? 
For a random classifier? 

ROC curve computed on the heart disease dataset from the UCI repository 

ROC curves and ranking 

An ROC curve is often summarized by the area under the 
curve (AUC). 
 
 
 
 
 
 
 
 
AUC is essentially the probability that a positive example 
will get a higher score than a negative example 

39 

AUC = 0.92 

ROC curves 

This is also a nice way of comparing classifiers: 


