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Linear models - continued 
Logistic regression 

Chapter 3.3 
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Predicting probabilities 

Objective:  learn to predict a probability P(y | x) for a binary 
classification problem using a linear classifier 
 
The target function: 
 
 
 
 
 
 
 
For positive examples P(y = +1 | x) = 1 whereas P(y = +1 | x) = 0 
for negative examples. 
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The Target Function is Inherently Noisy

f(x) = P[y = +1 | x].

The data is generated from a noisy target function:

P (y | x) =









f(x) for y = +1;

1− f(x) for y = −1.
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Another linear model 
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The logistic function (aka squashing 
function): 

Properties of the logistic function 
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Predicting a Probability

Will someone have a heart attack over the next year?

age 62 years
gender male
blood sugar 120 mg/dL40,000
HDL 50
LDL 120
Mass 190 lbs
Height 5′ 10′′

. . . . . .

Classification: Yes/No

Logistic Regression: Likelihood of heart attack logistic regression ≡ y ∈ [0, 1]

h(x) = θ

(
d
∑

i=0

wixi

)

= θ(wtx)
θ(s)

1

0 s

θ(s) =
es

1 + es
=

1

1 + e−s
.

θ(−s) =
e−s

1 + e−s
=

1

1 + es
= 1− θ(s).
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Predicting probabilities 

Fitting the data means finding a good hypothesis h 
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What Makes an h Good?

‘fiting’ the data means finding a good h

h is good if:







h(xn) ≈ 1 whenever yn = +1;

h(xn) ≈ 0 whenever yn = −1.

A simple error measure that captures this:

Ein(h) =
1

N

N
∑

n=1

(

h(xn)−
1
2(1 + yn)

)2
.

Not very convenient (hard to minimize).
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The Probabilistic Interpretation

Suppose that h(x) = θ(wtx) closely captures P[+1|x]:

P (y | x) =








θ(wtx) for y = +1;

1− θ(wtx) for y = −1.
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The Probabilistic Interpretation

So, if h(x) = θ(wtx) closely captures P[+1|x]:

P (y | x) =








θ(wtx) for y = +1;

θ(−wtx) for y = −1.
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The Probabilistic Interpretation

So, if h(x) = θ(wtx) closely captures P[+1|x]:

P (y | x) =









θ(wtx) for y = +1;

θ(−wtx) for y = −1.

. . . or, more compactly,
P (y | x) = θ(y ·wtx)
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More compactly: 
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Is logistic regression really linear? 

 
 
 
 
 
 
To figure out how the decision boundary looks like consider: 
 
 
 
i.e. linear! 
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P (y = +1|x) = exp(w

|
x)

exp(w

|
x) + 1

ln
P (y = +1|x)
P (y = �1|x) = w

|
x

P (y = �1|x) = 1� P (y = +1|x) = 1

exp(w

|
x) + 1

Maximum likelihood 

We will find w using the principle of maximum likelihood. 
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The Likelihood

P (y | x) = θ(y ·wtx)

Recall: (x1, y1), . . . , (xN, yN) are independently generated

Likelihood:
The probability of getting the y1, . . . , yN in D from the corresponding x1, . . . ,xN :

P (y1, . . . , yN | x1, . . . ,xn) =
N
∏

n=1

P (yn | xn).

The likelihood measures the probability that the data were generated if f were h.
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Valid since 

Maximizing the likelihood 
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Maximizing The Likelihood (why?)

max
∏N

n=1P (yn | xn)

⇔ max ln
(
∏N

n=1P (yn | xn)
)

≡ max
∑N

n=1 lnP (yn | xn)

⇔ min − 1
N

∑N
n=1 lnP (yn | xn)

≡ min 1
N

∑N
n=1 ln

1
P (yn|xn)

≡ min 1
N

∑N
n=1 ln

1
θ(yn·wtxn)

← we specialize to our “model” here

≡ min 1
N

∑N
n=1 ln(1 + e−yn·w

txn)

Ein(w) =
1

N

N∑

n=1

ln(1 + e−yn·w
txn)
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Maximizing the likelihood 

Summary:  maximizing the likelihood is equivalent to 
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−
1

N
ln

(
N
∏

n=1

θ(yn w xn)

)

=
1

N

N
∑

n=1

ln

(
1

θ(yn w xn)

) [

θ(s) =
1

1 + e−s

]

E (w) =
1

N

N
∑

n=1

ln
(

1 + e−ynw xn

)

︸ ︷︷ ︸

(h(xn),yn)
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minimize 
−

1

N
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N
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n=1
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N
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Cross entropy error 

Gradient descent 

We will use gradient descent to minimize our error function. 
 
Fortunately, the logistic regression error function has a single 
global minimum: 
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Our Ein Has Only One Valley

Weights, w

In
-s
am

pl
e
E
rr
or
,
E

in

. . . because Ein(w) is a convex function of w. (So, who care’s if it looks ugly!)
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Finding The Best Weights - Hill Descent

Ball on a complicated hilly terrain

— rolls down to a local valley
↑

this is called a local minimum

Questions:

How to get to the bottom of the deepest valey?

How to do this when we don’t have gravity?
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So we don’t need to worry about 
getting stuck in local minima 

Gradient descent 

Gradient descent is an iterative process 
 
 
How to pick     ?  
 

12 

Our Ein Has Only One Valley

Weights, w

In
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am

pl
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E
rr
or
,
E

in

. . . because Ein(w) is a convex function of w. (So, who care’s if it looks ugly!)
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How to “Roll Down”?

Assume you are at weights w(t) and you take a step of size η in the direction v̂.

w(t + 1) = w(t) + ηv̂

We get to pick v̂ ← what’s the best direction to take the step?

Pick v̂ to make Ein(w(t + 1)) as small as possible.
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Solution using gradient descent 

Remember:  gradient descent is a general purpose method for 
maximizing/minimizing a cost function 
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The Gradient is the Fastest Way to Roll Down

Approximating the change in Ein

∆Ein = Ein(w(t+ 1))− Ein(w(t))

= Ein(w(t) + ηv̂)− Ein(w(t))

= η∇Ein(w(t))tv̂

︸ ︷︷ ︸

minimized at v̂ = − ∇Ein(w(t))
||∇Ein(w(t)) ||

+O(η2) (Taylor’s Approximation)

>
≈ −η||∇Ein(w(t)) || ←attained at v̂ = − ∇Ein(w(t))

||∇Ein(w(t)) ||

The best (steepest) direction to move is the negative gradient:

v̂ = −

∇Ein(w(t))

||∇Ein(w(t)) ||
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Choosing the step size 

The choice of the step size affects the rate of convergence:  
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The ‘Goldilocks’ Step Size

η too small η too large variable ηt – just right

Weights, w

In
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am
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Weights, w
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rr
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,
E

in

Weights, w

In
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E
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,
E

in

large η

small η

η = 0.1; 75 steps η = 2; 10 steps variable ηt; 10 steps

c© AML Creator: Malik Magdon-Ismail Logistic Regression and Gradient Descent: 20 /23 Fixed learning rate gradient descent −→

Fixed Learning Rate Gradient Descent

ηt = η · ||∇Ein(w(t)) ||

||∇Ein(w(t)) ||→ 0 when closer to the minimum.

v̂ = −ηt ·
∇Ein(w(t))

||∇Ein(w(t)) ||

= −η · ||∇Ein(w(t)) || ·
∇Ein(w(t))

||∇Ein(w(t)) ||

v̂ = −η ·∇Ein(w(t))

1: Initialize at step t = 0 to w(0).
2: for t = 0, 1, 2, . . . do
3: Compute the gradient

gt = ∇Ein(w(t)). ←− (Ex. 3.7 in LFD)

4: Move in the direction vt = −gt.
5: Update the weights:

w(t+ 1) = w(t) + ηvt.

6: Iterate ‘until it is time to stop’.
7: end for
8: Return the final weights.

Gradient descent can minimize any smooth function, for example

Ein(w) =
1

N

N
∑

n=1

ln(1 + e−yn·w
tx) ← logistic regression
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Logistic regression using gradient descent 

Putting it all together: 
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t = 0 w(0)
t = 0, 1, 2, . . .

∇E = −
1

N

N
∑

n=1

ynxn

1 + eynw (t)xn

w(t + 1) = w(t)− η∇E

w

© AML

Logistic regression 

 
Comments: 
v  Assumptions:  i.i.d. data and form of P(y | x).  Alternative to 

the assumption of P(y | x):  Features have a Gaussian 
distribution for each class, i.e. 

                      has a normal distribution 
v  In practice logistic regression is solved by faster methods 

than gradient descent 
v  There is an extension to multi-class classification 
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P (xi|Y = yk)

Stochastic gradient descent 

Variation on gradient descent that considers the error for a 
single training example: 
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Stochastic Gradient Descent (SGD)

A variation of GD that considers only the error on one data point.

Ein(w) =
1

N

N
∑

n=1

ln(1 + e−yn·w
tx) =

1

N

N
∑

n=1

e(w,xn, yn)

• Pick a random data point (x∗, y∗)

• Run an iteration of GD on e(w,x∗, y∗)

w(t + 1)← w(t)− η∇we(w,x∗, y∗)

1. The ‘average’ move is the same as GD;

2. Computation: fraction 1
N

cheaper per step;

3. Stochastic: helps escape local minima;

4. Simple;

5. Similar to PLA.

Logistic Regression:

w(t + 1)← w(t) + y∗x∗

(
η

1 + ey∗wtx∗

)

(Recall PLA: w(t+ 1)← w(t) + y∗x∗)
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Summary of linear models 

Linear methods for classification and regression: 
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The Linear Signal

s = wtx−→






























→ sign(wtx) {−1,+1}

→ wtx R

→ θ(wtx) [0, 1]

y = θ(s)
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