Linear models - continued
Logistic regression

Chapter 3.3
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Predicting probabilities

Objective: learn to predict a probability P(y | x) for a binary
classification problem using a linear classifier

The target function: f(x) =Py =+1]x].
f(x) for y = +1;

Py |x) =
1-f(x) fory=-1.

For positive examples P(y = +1 | x) = 1 whereas P(y = +1 | x) = 0
for negative examples.

Another linear model

s=wTx
linear classification linear regression logistic regression
h(x) = sign(s) h(x) = s h(x) = 0(s)
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The logistic function (aka squashing
function):
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Properties of the logistic function
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Predicting probabilities

Fitting the data means finding a good hypothesis h
h(x,)~1  whenever y, = +1;
h is good if:
h(x,) =0  whenever y, = —1.

Suppose that h(x) = 8(wx) closely captures P[+1]x]

O(w'x) for y = +1;
Ply|x)=

1-0(w'x) fory=-1.

Predicting probabilities

Fitting the data means finding a good hypothesis h

h(x,) =1  whenever y, = +1;
h is good if:
h(x,) =0  whenever y, = —1.

Suppose that h(x) = 6(w™x) closely captures P[+1|x]:

0(w'x) for y = +1;
Ply|x)=
o(—w™x) fory=—1.

More compactly:  P(y | x) = 6(y - w'x)
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Is logistic regression really linear?

_ _ exp(wTx)
Pl=H109 = ptwig + 1

Ply = —1]x) = 1 — P(y = +1]x) = !

exp(wTx) + 1

To figure out how the decision boundary looks like consider:

Py =41x) o
Ply=—1ix)

i.e. linear!

Maximum likelihood

We will find w using the principle of maximum likelihood.

Likelihood:
The probability of getting the yi, ..., yn in D from the corresponding x, ..., Xy
N
Py, ..., yn | Xi,.. o)) = HP(]/,, | %n).
n=1
Valid since  (X1,91), -+ (xx,yn) are independently generated

Maximizing the likelihood
max H‘,};l Py, | x5)

< max In (H,}Zl Py | x“))

= max XL Py | %)

© min - — 250 Py, | x,)
— LN 1

= min ¥ 2ng In PR

= mn L3N L

- N £en=1"" (y,-w'x,)

= min % Z‘Ll In(1 + c*!/ww‘x,,)

Maximizing the likelihood

Summary: maximizing the likelihood is equivalent to

N
1
minimize — v In ( g Oy W' x,) )

— 1 - 1 1 1
"N ; n<9(yn wT xn)> {H(s): 1e ]

1 & B
Eu(w) = N Z In (1 + e v "")

=1 ~——~———= Cross enfropy error

e(h(xn).yn)

Gradient descent
We will use gradient descent to minimize our error function.

Fortunately, the logistic regression error function has a single
global minimum:

So we don't need to worry about
getting stuck in local minima

Weights, w

Gradient descent

Gradient descent is an iterative process

w(t+1)=w(t)+nv

How to pick v 2

Weights, w
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Solution using gradient descent

Remember: gradient descent is a general purpose method for
maximizing/minimizing a cost function

Approximating the change in Ej,
AE, = Ey(w(t+1) - Eu(w(t)

= En(w(t) +nv) — En(w(1))

= nVEwu(w(t)™ +0(n?)

_ _VEBu(w(t)
IVEW(w(D) ]

minimized at v =

Choosing the step size

The choice of the step size affects the rate of convergence:

7 too small 7 too large variable 7, — just right

Woghts, w. Weights,w

Let'stake: 1, =1+ | VE,(w(t)) |

| VEu(w(t)) | — 0 when closer to the minimum.

v =—n-VEp(w(t))

It

2

5:

6:

Logistic regression using gradient descent

Putting it all together:
Initialize at step ¢t = 0 to w(0).
fort=0,1,2,...do

Compute the gradient

g = VEu(w(t)).

Move in the direction v; = —g;.
Update the weights:

nXn

& Y
VE. = - N Z 1 + evnw(t)xn

n=1

w(t+1) =w(t) + v,

Iterate ‘until it is time to stop’.
end for
Return the final weights.

Logistic regression

Comments:
+ Assumptions: i.i.d. data and form of P(y | x). Alternative to
the assumption of P(y | x): Features have a Gaussian
distribution for each class, i.e.

P(x;]Y = yi) has anormal distribution
In practice logistic regression is solved by faster methods
than gradient descent

» There is an extension to multi-class classification

Stochastic gradient descent

Variation on gradient descent that considers the error for a
single training example:

Ein(w) =

N N
2 : 1 d
2 1n'l+e~,"/”w"):7,§ e(W,Xn, Yn
=1 L N ( o)

Pick a random data point (X, )

Run an iteration of GD on e(w, X,,y,)

w(t+1) + w(t) = nVwe(w, X, 4)

. n
w(t+1) « w(t) + y.x. (W)

Summary of linear models

Linear methods for classification and regression:

m —> sign(w'x) {-1,+1}

|
N

+

g

@ — fw'x) 0,1]
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