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Which hyperplane is better?

Support vector machines and large margin
classification

Chapter e-8

Which of these hyperplanes is likely to yield a more accurate classifier?

Which hyperplane is better?

The hyperplane on the right has the largest margin It also provides the largest cushion against noise

The book calls such a hyperplane “fat"

The optimal margin hyperplane is introduced in section 8.1 in Chapter e-8 of the book




Large margin classifiers
Perceptron: find hyperplane that separates the two classes

Support Vector Machine (SVM): separating hyperplane with a
large margin 10

Intuitive concept that is backed by
theoretical results
(statistical learning theory)

Has its origins in the work of Valdimir”
Vapnik
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Vapnik, V., and A. Lerner. Pattern recognition using generalized portrait method.
Automation and Remote Control, 24, 774-780, 1963.

The history of SVMs

Large margin linear classifiers

« Vapnik, V., and A. Lerner. Pattern recognition using
generalized portrait method. Automation and Remote
Control, 24, 774-780, 1963.

Large margin non-linear classifiers

« B. Boser, I. Guyon, and V. Vapnik. A training algorithm
for optimal margin classifiers. In Fifth Annual
Workshop on Computational Learning Theory, pages 144
—152,1992

SVMs for non-separable data

« C. Cortes and V. N. Vapnik, Support vector networks.
Machine Learning, vol. 20, no. 3, pp. 273-297, 1995.

Since then - lots of other large margin algorithms

Bring back the bias

Before: Now:

x € {1} x R%; w € R+ x€RL bER, weR?

1 wo bias b

xT w T w
x= "1 ow= . ! !

: : X = g || 5 W = 8 o

Xy wq T4 Wy

signal = w'x signal = w™x + b

The geometric margin

The margin of a linear discriminant:

1
in(Xea —Xg)

~_aunit vector
in the direction of w

This exposition of the large margin hyperplane follows section 4.1 in
Asa Ben-Hur and Jason Weston. A User's guide to Support Vector Machines, 2009.
http://www.cs.colostate.edu/~asa/pdfs/howto.pd
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The geometric margin

Want to find:
in(X@ —Xg)
Suppose that x, and x_ are equidistant from the decision
boundary:
wixg +b=a
wixg +b=—a
Subtracting the two equations:
wT(xg —Xo) = 2a

Divide by the norm of w:
2a

wT(xg —xg) = m

Canonical separating hyperplane

Hyperplane h = (b, w)

h separates the data means:

w'x, +b>0
o

Yn(W'x, +0) >0

By rescaling the weights and bias,

1rllin v Yo(W'x, +0) =1
n= V

The geometric margin

To get a well-defined value we will use the canonical
representation of a hyperplane.

I

Under this assumption we have that the margin equals | | | |
A\'%

Maximizing the margin is therefore equivalent to minimizing ‘ ‘W| |2

Motivation

Theoretical motivation: The VC dimension, which
measures the complexity of a hypothesis, increases
with decreasing margin.
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The linear SVM

Objective: maximize the margin while correctly
classifying all examples correctly

inimize ||w][?
minimize—|(|w
w,b 2

subject to: y;(wTx; +b)>1 i=1,...,N.

Digression: constrained optimization

Before considering optimization problems with inequality
constraints we will consider ones with equality constraints:

minimize f(x)
subject to: g;(x) =0

And to make things even simpler, start with the case of a single
constraint g(x)

minimize f(x)

subject to: g(x) =0

Digression: constrained optimization

/x.7)

Images from http://en.wikipedia.org/wiki/Lagrange_multiplier
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Digression: constrained optimization
Claim: A minimizer x™ of the constrained optimization problem

must have the property that V f(x*) is orthogonal to the
constraint surface.

Therefore there exists )\ £ 0 such that

V(x*)+AVg(x*) =0

) is known as a Lagrange multiplier

Images from h1'1'p://en,wikipedia,org/wiki/lﬁzgrang e_multiplier X 16
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Lagrange multipliers

When there are multiple equality constraints:
Vix")+ Z)\ngi(x*) =0
The Lagrangian function: ’
A A) = f(x) + D Nigi(x) = f(x) + ATg(x)
The above condition is ob'rainecii by setting
VxA(x,A) =0 Vx e
And the condition V A(x,A) =0

leads to the constraint equations.

Conclusion: the solution is a stationary point of the Lagrangian

Inequality constraints

minimize f(x)
subject to: ¢(x) <0

Two possible scenarios:

g(x) < O - the constraint is inactive

g(x) = 0 - the constraint is active
If the constraint is inactive the stationarity conditionis V f(x) = 0
This corresponds to a stationary point of the Lagrangian with A = 0
When the constraint is active, we have )\ # 0
Both cases can be summarized by the condition

Ag(x) =0

The sign of \ is important: f(x) will be minimized only if its
gradient is oriented away from the region g(x) <0, i.e.

Vf(x*) = =AVg(x"*) where A >0

Constrained optimization with inequality
constraints

Conclusion:

Our constrained optimization problem of minimizing f(x) such
that g(x) < O is solved by x, A that satisfy:

VA(x,A) =0
g(x) <0
A>0

Ag(x) =0

These are known as the KKT conditions

Constrained optimization with inequality
constraints

With multiple constraints:

Our constrained optimization problem of minimizing f(x) such
that gi(x) < O is solved by x, A\ that satisfy:

VA(x,A) =0
gi(x) <0
A>0
Aigi(x) =0

These are known as the KKT conditions
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Lagrangian duality

Claim: The problem of minimizing f(x) s.t. g,(x) < O can be
expressed as:
min max A(x, ) such that A >0
xX

We can see this by performing the inner maximization:

f(x) g(x)<0

m)&\txf(x) +ATg(x) = {oo g(x) >0

L(x,3)

Solution is a saddle point

Lagrangian duality

Claim: The problem of minimizing f(x) s.t. g,(x) < 0 can be
expressed as:
min max A(x,A) such that A >0

X
Instead of using the primal formulation let's consider:

max min A(x, A) such that A >0

This is called the dual

Under certain conditions (convexity) the two problems have the
same solution

Back to SVMs

Lagrangian for the SVM problem:
1 n
Aw, b, o) = 5\|w||2 +) i [L—y; (WTx; + b))

i=1 - .
original constraints:

Necessary conditions for the saddle point: Yi(WTxi +0) > 1

OA =
oW ; a;(—yx;) =0

n
=>w= E AiYiXq
i=1

OA i
=) ay; =0

How do we get b?
See sections 8.2.2,8.2.3 in Chapter e-8

23

Support Vectors
Let's use the KKT conditions:
a; [l =y (Wwix; +b)] =0

Implication:
Pick ani such that a; > 0

yi(Wix; +b) =1

:>b:yi—WTXi
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Support Vectors

Let's use the KKT conditions:
a;[1—y (Wwix; +0)] =0

Implication:
Pick an i such that a; > 0

yi (Wwix; +b) =1
=>b=y —wW'x;

The correspond x; are called
support vectors

The dual

1 n
A(w,b,a) = 5||W||2 +) o[-y (WTx; + b))

=1
The dual: . Zl e
1 n T n -
iyi =0
wio) =} (S o e
=1 j=1
n n
+) = b o
i=1 i=1

n n
T
- E QilYi E Q;Y;X ;X
i=1 j=1

Support Vectors

Claim: The fraction of support vectors is an upper bound on the
estimated Leave-One-Out error (see page 17 in chapter 8)

1Y # support vectors
Eey(SVM) = %3 en € ——
n=1

Reasoning: if we take out a data point which is not a support
vector, the decision boundary remains the same.

The dual
1 (& T
W(a) =3 <; aiyixi> Z_:lajijj

n_ n "

+ Z o — bZ Y
=1 =1
n n

- Zaiyi Zajijgxi
i=1 j=1

= Z oy — % Z Z 0 Y Y X] X
=1

i=1 j=1
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The dual
n 1 n n
max(ilmize ; o — B ; 2 Oéiajyiij;‘rxj

n
subject to: a; > 0, Zaiyi =0
i=1

Comments: quadratic programming problem (ho local minima!)
Usually a sparse solution (many alphas equal to 0)

Compare to the primal:
S 1|| H2
minimize— ||w
w,b 2

subject to: y;(wTx; +b) >1 i=1,...,n.

The non-seaprable case: the soft margin SVM
In order to allow for misclassifications we replace the constraints
yi(wix; +b) > 1
with B(WTx £ b) > 1— &
&; > 0 are called slack variables

Need to incorporate the slack variables in the optimization problem
because we want to discourage their. We'll do it with:

n

Z &i which is a bound on the number of misclassified examples
i=1

Section 8.4 in Chapter e-8

Soft margin SVM
Our optimization problem for the non-separable case:

NS PPN
mlI}"llI’illZQQHWH + C'Zlﬁz
subject to: y;(wTx; +b) >1-¢&, >0, i=1,...,n.

C=100

10 C=10

-0.5 0.0 0.5 1.0 -1.0 -0.5 0.0 0.5 1.0

Useful even if the data is linearly separable!

SVMs for non-separable data

Our optimization problem for the non-separable case:
RIS ST -
Inlr‘I;I})llZG§HWH +C 2; &
=
subject to: y;(WTx; +b0) >1-&, & >0, i=1,...,n.

Let's form the Lagrangian:

A(w, b, &) = %ku2 O 6+ il & -y (wix+ b)) - S Bt
i=1

=1 i=1
Saddle point equations: oA =
— =W — Zaiyixi =0
ow pt

8A n

- = Z yio; =0
o

OA

87&-:0_0”_&20
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The dual

Plugging into the Lagrangian we get the following dual formulation:
n n n

. 1
maximize E a; — 3 E E aiajyiijng
[e3

i=1 i=1 j=1

n
subject to: o; > 0, Z a;y; =0
i=1
Bi =0, C—a;—fB; =0
Beta appears only in the constraints. Replace it with the
constraint 0<ao; <C

The dual

The final form of the dual becomes

n 1 n n
maximize g a; — 3 E g QO Y X X
«
i=1 i=1 j=1

subject to: 0 < a; < C, Zaiyi =0
i=1

SVM: dual and primal

Primal: L1 9 =
mu&rﬁ{uzeinH + Czlfi
subject to: y;(WTx; +b) >1—-¢;, & >0, i=1,...,n.

n n

: - le-v
Dual: maximize o — 3 oziajyiij;-rxj

i=1 i=1 j=1
n

subject to: 0 < a; < C, Zaiyi =0
i=1

The dual has simpler constraints and will allow us to use SVMs as
non-linear classifiers

SVM solvers

Primal:
« Fast
= Inprinciple, limited fo linear SVMs.
« Software:
. liblinear- linear SVMs
« PEGASOS - subgradient descent that also works for nonlinear SVM

Dual:

= You can solve it by generic quadratic programming solvers

« SVM-specific solvers: SMO (optimize two alphas at a time)
= Software: libsvm (a flavor of SMO)

Scikit-learn uses liblinear and libsvm
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SMO

Sequential Minimal Optimization (SMO): A solver for the SVM
dual problem.

When you choose two variables, the resulting problem can be
solved analytically!

Issues and tricks:
« Which two variables to choose?

« Shrinking: temporarily remove variables that are less likely to be
chosen (at upper/lower bounds). Need occasional "unshrinking".

Platt, John (1998), Sequential Minimal Optimization: A Fast Algorithm for Training Support
Vector Machines
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