SVMs: nonlinearity through kernels

Chapter 3.4, e-8

Non-separable data

Consider the following two datasets:

o . 2 9 x
x o
N %
(]
* x
X
x x
x *0

Both are not linearly separable. But there is a differencel

Non-separable data

Consider the following two datasets:

o
Q «x o

x o
N %
o

Linear with outliers Nonlinear

Transform your features!

Map your data into “"Z-space” using a nonlinear function

x x
x o x| x x
x [o] x X
o o6} x X x
[} RS
g o ° > Il © * *
o " D x
x x o
x % 0

10/6/16

Classification in Z-space

In Z-space the data can be linearly separated: §(z) = sign(w"z)

* x
x fo) x| x x
x o o &
o % x % x
o Z ; (o) x x
o o x
x x % o
R X * 0o

Classification in Z-space

= sign(W'®(x))
P * x x
o .o
< X
o % x X x
[e]
¢ o x x
o0
[e] [e] x
x ® ©
e 62 * Qo

Classification in Z-space

1 1

Py (X) T

[0F >

|- = sl
‘174 (X) T1To

D5(x) a3

What can we say about the dimensionality of the Z-space as a
function of the dimensionality of the data?

The polynomial Z-space

We can choose higher order polynomials:

P,(x) = (1,21, 29),

By(x) = (1,21, 39, 27, 1139, T3),

B3(x) = (1,21, 29, 71, T129, T3, 3, T30, 1173, T3),

By(x) = (1,21, T9, 73, Ty 29, T3, 13, T30y, 125, 33, 21, 20, 2303, 1125, 1),

What are the potential effects of increasing the order of the
polynomial?

10/6/16

The polynomial Z-space

Linear model fourth order polynomial
o
O «x 9
x o
AN ®
O
X x
X
X X
x 0

Feature-space dimensionality increases rapidly and with it the
complexity of the model: danger of overfitting

A few potential issues...

Transforming the data seems like a good idea:

+ Better chance of obtaining linear separability
But:

+ At the expense of potential overfitting

+ Computationally expensive (memory and time)

Kernels: avoid the computational expense by an implicit mapping

Achieving non-linear discriminant functions

Consider two dimensional data and the mapping
¢(X) = (l‘%, \/§:U1£C2, x%)T
Let's plug that into the discriminant function:
wTo(x) = wlx% +V2wox1 0 + wgmg

The resulting decision boundary is a conic section.

vy e
O 0

parabola circle/ellipse hyperbola

How to avoid the overhead of explicit mapping

Suppose the weight vector can be expressed as:
n

W = E (679,93

i=1
The discriminant function is then:
T = xT b
wix+b Z X x +
i
And using our nonlinear mapping:

wig(x)+b = Z a;p(x;)Tp(x) + b

Turns out we can often compute the dot product without
explicitly mapping the data into a high dimensional feature
space!

10/6/16

Example

Let's go back to the example
$(x) = (7, V2r122,23)T
and compute the dot product
$(x)Td(z) = (21, V2w122,23)7 (27, V22129, 23)
= 2222 + 221202129 + X522
~ (x72)’

Do we need to perform the mapping explicitly?

Example

Let's go back to the example
$(x) = (a1, V2r122,23)T
and compute the dot product
$(x)Td(2) = (21, V22122, 23)7 (27, V221 20, 25)
= 2222 + 2212021 29 + X322
~ (x7z)?

Do we need to perform the mapping explicitly?

NO! Squaring the dot product in the original space has the same
effect as computing the dot product in feature space.

Kernels

Definition: A function k(x, z) that can be expressed as a dot
product in some feature space is called a kernel.

In other words, k(x, 2) is a kernel if there exists ¢ : X — F
such that T

k(x,z) = ¢(x)T¢(z)
Why is this interesting?

If the algorithm can be expressed in terms of dot products, we
can work in the feature space without performing the mapping
explicitly!

The dual SVM problem

The dual SVM formulation depends on the data through dot
products, and so can be expressed using kernels. Replace

n 1 n n
maximize Z o — — Z Z QOGY Y X X
@ i=1 2 j=1
n

subject to: 0 < a; < C, Zaiyi =0
i=1
with: '
g I~y
maxtllmlze Z o — B Z Z az‘ajyiyjk(xiv Xj)

i=1 i=1j=1

n
subject to: 0 < oy < C, Zaiyi =0
i=1

10/6/16

Standard kernel functions

The linear kernel
k(x,z) = x"z
Homogeneous polynomial kernel
k(x,z) = (xTz)?
Polynomial kernel
k(x,2z) = (xTz 4 1)¢
Gaussian kernel

k(x,z) = exp(—[|x — z|*)

Standard kernel functions

The linear kernel Feature space:
k(X, Z) =xTz Original features
Homogeneous polynomial kernel
Fx,7) = (xT2)" s

Polynomial kernel

_ d All monomials of
k(X, Z) - (XTZ + 1) degree less or equal to d

Gaussian kernel

k(X, Z) = exp(—fy| |X — Z| |2) Infinite dimensional

Demo

Using polynomial kernel:

polynomial degree 5

linear kernel polynomial degree 2

1.0

0.5

0.0

-0.5

_1'-01.0 -0.5 0.0 05 1.0-1.0 -0.5 0.0 05 1.0-1.0 -05 0.0 0.5 1.0

k(x,z) = (xTz 4 1)¢

Demo

Using the Gaussian kernel: k(x, Z) = eXp(—’)/‘ |x — Z| ‘2)

gaussian, gamma=0.1 gaussian, gamma=1

1.0

0.5

0.0

"Kernelizing" the perceptron algorithm

Recall the primal version of the perceptron algorithm:

labeled data D in homogeneous coordinates

Input:
Output: weight vector w
w=20

converged = false
while not converged :
converged = true
for i in 1,..,|D]|
if x; is misclassified update w and set

converged=false Wl =w+ NYiX;

What do you need to change to express it in the dual?
(T.e. express the algorithm in terms of the alpha coefficients)

"Kernelizing" the perceptron algorithm

labeled data D in homogeneous coordinates
weight vector a

Input:
Output:

a =0
converged = false
while not converged :
converged = true
for i in 1,..,|D]|
if x; is misclassified update a and set
converged=false

Theupdate CQv; — O + NY;

Ts equivalent to:
/
W' =W+ nyix;

"Kernelizing" the perceptron algorithm

labeled data D in homogeneous coordinates

Input:

Output: weight vector a
a =0

converged = false

while not converged :

n

W = E ;X
converged = true =
for i in 1,..,|D| =

if x; is misclassified update a and set
converged=false

Linear regression revisited

The sum-squared cost function:

2
d (i —wTx)? = (y — Xw)T(y — Xw)
7
The optimal solution satisfies:
X" Xw =XTy
If we express w as:
w = Z a;x; = XTa

=1

We get:

10/6/16

Kernel linear regression

We now get that o satisfies:

XXTa =y

Compare with:

X"Xw =XTy

Which is harder to find? What have we gained?

The kernel matrix
X TX The covariance matrix (d x d)
XXT Matrix of dot products associated with a dataset (n x n).
Can replace it with a matrix K such that:

Kij = ¢(xi)To(x5) = k(xi,%;)

This is the kernel matrix associated with a dataset
a.k.a the Gram matrix

How does that matrix look like?

Kernel matrix for gene
expression data in yeast:

Properties of the kernel matrix

The kernel matrix:
Kij = ¢(x:)Td(x;) = k(xi, %)

a Symmetric (and therefore has real eigenvalues)
a Diagonal elements are positive
a Every kernel matrix is positive semi-definite, i.e.

xTKx>0 Vx

a Corollary: the eigenvalues of a kernel matrix are positive

10/6/16

Standard kernel functions

The linear kernel Feature space:

k(x,z) =xTz Original features
Homogeneous polynomial kernel

k(x,z) = (xTz)?
Polynomial kernel

k(x,2z) = (xTz 4 1)¢

Gaussian kernel (aka RBF kernel)

All monomials of
degree d

All monomials of

k(X, Z) = exp(—fy\ |X — zl |2) Infinite dimensional

How do we even know that the Gaussian is a valid kernel?

degree less or equal to d

Some tricks for constructing kernels

Let K(x,z) be a kernel function

If a>0 then aK(x,z) is a kernel

Some tricks for constructing kernels
Sums of kernels are kernels:
Let K; and K, be kernel functions then K; + K, is a kernel

What is the feature map that shows this?

Some tricks for constructing kernels
Sums of kernels are kernels:
Let K; and K, be kernel functions then K; + K, is a kernel

Feature map: concatenation of the underlying feature maps

10/6/16

Some tricks for constructing kernels

Products of kernels are kernels:

Let K; and K, be kernel functions then K; K; is a kernel

Some tricks for constructing kernels
Products of kernels are kernels:
Let K; and K; be kernel functions then K; K, is a kernel

Construct a feature map that contains all products of pairs of
features

The cosine kernel

If K(x,z) is a kernel then
K(z,z)

(w,2) = K(z,2)K(z,z)

is a kernel

The cosine kernel

If K(x,z) is a kernel then
K(z,z)

K(z.2) = K(z,2)K(z,2)

is a kernel

This kernel is equivalent to normalizing each example to have
unit norm in the feature space associated with the kernel.

This kernel is the cosine in the feature space associated with
the kernel K:

$(2)7¢(2) $(z)"(2)

cos(¢(z), ¢(2))

~ @M@~ olrTe@) o(=)7o(2)

10/6/16

Infinite sums of kernels

Theorem: A function K (x,z) = K(x7z)

with a series expansion
oo

K(t) =) ant"

n=0

is a kernel iff a,, > 0 foralln.

Infinite sums of kernels

Theorem: A function K (x,z) = K(x7z)
with a series expansion

K(t) = i ant™

n=0

is a kernel iff a,, > 0 foralln.

Corollary: K (x,2) = exp (2yx7z) is a kernel

Infinite sums of kernels

Theorem: A function K (x,z) = K(x7z)
with a series expansion

K(t)=> ant"
n=0

is a kernel iff a,, > 0 foralln.
Corollary: K (x,z) = exp (2yx7z) is akernel

Corollary: k(x,2) = exp(—7||x — z||?) is a kernel
exp(—7|lx — 2|*) = exp (—y (x"x + 272) + 27 (xT2))

i.e. the Gaussian kernel is the cosine kernel of the exponential
kernel K'(z,2) = K(z,z)
K(z,7)K(2,2)

10/6/16

10

