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Clustering 

²  Clustering is the art of finding groups in data (Kaufman and 
Rousseeuw, 1990).  

 
²  What is a cluster?  

– Group of objects separated from other clusters  
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Digression:  means and medians 

The mean is the minimizer of 
 
 
 
Using 
 
 
 
Gives rise to the geometric median, which is more robust to 
outliers. 
 
Issue:  no closed form solution. 
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Means, medians, medoids 

It may be useful to restrict exemplars to be one of the given 
data points. 
 
Medoid:  representative object of a data set or a cluster whose 
average distance to all the objects in the cluster is minimal 
 
How would we compute the medoid for a set of points? 
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Clustering 

A clustering is a partition of the elements in your dataset into K 
subsets such that the following holds: 
 
Each observation belongs to a cluster: 
 
 
The clusters are non-overlapping: 
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number of people. Our goal is to perform market segmentation by identify-
ing subgroups of people who might be more receptive to a particular form
of advertising, or more likely to purchase a particular product. The task of
performing market segmentation amounts to clustering the people in the
data set.
Since clustering is popular in many fields, there exist a great number of

clustering methods. In this section we focus on perhaps the two best-known
clustering approaches: K-means clustering and hierarchical clustering. In

K-means
clustering

hierarchical
clustering

K-means clustering, we seek to partition the observations into a pre-specified
number of clusters. On the other hand, in hierarchical clustering, we do
not know in advance how many clusters we want; in fact, we end up with
a tree-like visual representation of the observations, called a dendrogram,

dendrogram
that allows us to view at once the clusterings obtained for each possible
number of clusters, from 1 to n. There are advantages and disadvantages
to each of these clustering approaches, which we highlight in this chapter.
In general, we can cluster observations on the basis of the features in

order to identify subgroups among the observations, or we can cluster fea-
tures on the basis of the observations in order to discover subgroups among
the features. In what follows, for simplicity we will discuss clustering obser-
vations on the basis of the features, though the converse can be performed
by simply transposing the data matrix.

10.3.1 K-Means Clustering

K-means clustering is a simple and elegant approach for partitioning a
data set into K distinct, non-overlapping clusters. To perform K-means
clustering, we must first specify the desired number of clusters K; then the
K-means algorithm will assign each observation to exactly one of the K
clusters. Figure 10.5 shows the results obtained from performing K-means
clustering on a simulated example consisting of 150 observations in two
dimensions, using three different values of K.
The K-means clustering procedure results from a simple and intuitive

mathematical problem.We begin by defining some notation. LetC1, . . . , CK

denote sets containing the indices of the observations in each cluster. These
sets satisfy two properties:

1. C1 ∪ C2 ∪ . . . ∪ CK = {1, . . . , n}. In other words, each observation
belongs to at least one of the K clusters.

2. Ck ∩ Ck′ = ∅ for all k ̸= k′. In other words, the clusters are non-
overlapping: no observation belongs to more than one cluster.

For instance, if the ith observation is in the kth cluster, then i ∈ Ck. The
idea behindK-means clustering is that a good clustering is one for which the
within-cluster variation is as small as possible. The within-cluster variation
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A plausible objective 

We would like a clustering to minimize the within-cluster 
variation. 
Let’s assume it is measured via a function W(Ck).  So the 
overall objective is: 
 
 
 
A possible definition of W(Ck): 
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K=2 K=3 K=4

FIGURE 10.5. A simulated data set with 150 observations in two-dimensional
space. Panels show the results of applying K-means clustering with different val-
ues of K, the number of clusters. The color of each observation indicates the clus-
ter to which it was assigned using the K-means clustering algorithm. Note that
there is no ordering of the clusters, so the cluster coloring is arbitrary. These
cluster labels were not used in clustering; instead, they are the outputs of the
clustering procedure.

for cluster Ck is a measure W (Ck) of the amount by which the observations
within a cluster differ from each other. Hence we want to solve the problem

minimize
C1,...,CK

{
K∑

k=1

W (Ck)

}
. (10.9)

In words, this formula says that we want to partition the observations into
K clusters such that the total within-cluster variation, summed over all K
clusters, is as small as possible.
Solving (10.9) seems like a reasonable idea, but in order to make it

actionable we need to define the within-cluster variation. There are many
possible ways to define this concept, but by far the most common choice
involves squared Euclidean distance. That is, we define

W (Ck) =
1

|Ck|
∑

i,i′∈Ck

p∑

j=1

(xij − xi′j)
2, (10.10)

where |Ck| denotes the number of observations in the kth cluster. In other
words, the within-cluster variation for the kth cluster is the sum of all of
the pairwise squared Euclidean distances between the observations in the
kth cluster, divided by the total number of observations in the kth cluster.
Combining (10.9) and (10.10) gives the optimization problem that defines
K-means clustering,

minimize
C1,...,CK

⎧
⎨

⎩

K∑

k=1

1

|Ck|
∑

i,i′∈Ck

p∑

j=1

(xij − xi′j)
2

⎫
⎬

⎭ . (10.11)

W (Ck) =
1

|Ck|
X

i,j2Ck

||xi � xj ||2

A plausible objective 

We would like a clustering to minimize the within-cluster 
variation. 
Let’s assume it is measured via a function W(Ck).  So the 
overall objective is: 
 
 
 
A possible definition of W(Ck): 
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W (Ck) =
1

|Ck|
X

i,j2Ck

||xi � xj ||2

= 2
X

i2Ck

||xi � µk||2
µk

the centroid 
for cluster k 

The k-means objective function 

Putting it all together: 
 
 
 
 
 
A problem with this problem:  NP-complete. 
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The k-means algorithm 

A heuristic algorithm for solving the problem: 
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Now, we would like to find an algorithm to solve (10.11)—that is, a
method to partition the observations intoK clusters such that the objective
of (10.11) is minimized. This is in fact a very difficult problem to solve
precisely, since there are almostKn ways to partition n observations into K
clusters. This is a huge number unless K and n are tiny! Fortunately, a very
simple algorithm can be shown to provide a local optimum—a pretty good
solution—to the K-means optimization problem (10.11). This approach is
laid out in Algorithm 10.1.

Algorithm 10.1 K-Means Clustering

1. Randomly assign a number, from 1 to K, to each of the observations.
These serve as initial cluster assignments for the observations.

2. Iterate until the cluster assignments stop changing:

(a) For each of the K clusters, compute the cluster centroid. The
kth cluster centroid is the vector of the p feature means for the
observations in the kth cluster.

(b) Assign each observation to the cluster whose centroid is closest
(where closest is defined using Euclidean distance).

Algorithm 10.1 is guaranteed to decrease the value of the objective
(10.11) at each step. To understand why, the following identity is illu-
minating:

1

|Ck|
∑

i,i′∈Ck

p∑

j=1

(xij − xi′j)
2 = 2

∑

i∈Ck

p∑

j=1

(xij − x̄kj)
2, (10.12)

where x̄kj = 1
|Ck|

∑
i∈Ck

xij is the mean for feature j in cluster Ck.

In Step 2(a) the cluster means for each feature are the constants that
minimize the sum-of-squared deviations, and in Step 2(b), reallocating the
observations can only improve (10.12). This means that as the algorithm
is run, the clustering obtained will continually improve until the result no
longer changes; the objective of (10.11) will never increase. When the result
no longer changes, a local optimum has been reached. Figure 10.6 shows
the progression of the algorithm on the toy example from Figure 10.5.
K-means clustering derives its name from the fact that in Step 2(a), the
cluster centroids are computed as the mean of the observations assigned to
each cluster.
Because the K-means algorithm finds a local rather than a global opti-

mum, the results obtained will depend on the initial (random) cluster as-
signment of each observation in Step 1 of Algorithm 10.1. For this reason,
it is important to run the algorithm multiple times from different random

Example 
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Data Step 1 Iteration 1, Step 2a

Iteration 1, Step 2b Iteration 2, Step 2a Final Results

FIGURE 10.6. The progress of the K-means algorithm on the example of Fig-
ure 10.5 with K=3. Top left: the observations are shown. Top center: in Step 1
of the algorithm, each observation is randomly assigned to a cluster. Top right:
in Step 2(a), the cluster centroids are computed. These are shown as large col-
ored disks. Initially the centroids are almost completely overlapping because the
initial cluster assignments were chosen at random. Bottom left: in Step 2(b),
each observation is assigned to the nearest centroid. Bottom center: Step 2(a) is
once again performed, leading to new cluster centroids. Bottom right: the results
obtained after ten iterations.

initial configurations. Then one selects the best solution, i.e. that for which
the objective (10.11) is smallest. Figure 10.7 shows the local optima ob-
tained by running K-means clustering six times using six different initial
cluster assignments, using the toy data from Figure 10.5. In this case, the
best clustering is the one with an objective value of 235.8.
As we have seen, to perform K-means clustering, we must decide how

many clusters we expect in the data. The problem of selecting K is far from
simple. This issue, along with other practical considerations that arise in
performing K-means clustering, is addressed in Section 10.3.3.

Local minima 
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320.9 235.8 235.8

235.8 235.8 310.9

FIGURE 10.7. K-means clustering performed six times on the data from Fig-
ure 10.5 with K = 3, each time with a different random assignment of the ob-
servations in Step 1 of the K-means algorithm. Above each plot is the value of
the objective (10.11). Three different local optima were obtained, one of which
resulted in a smaller value of the objective and provides better separation between
the clusters. Those labeled in red all achieved the same best solution, with an
objective value of 235.8.

10.3.2 Hierarchical Clustering

One potential disadvantage of K-means clustering is that it requires us to
pre-specify the number of clusters K. Hierarchical clustering is an alter-
native approach which does not require that we commit to a particular
choice of K. Hierarchical clustering has an added advantage over K-means
clustering in that it results in an attractive tree-based representation of the
observations, called a dendrogram.
In this section, we describe bottom-up or agglomerative clustering.

bottom-up

agglomerative
This is the most common type of hierarchical clustering, and refers to
the fact that a dendrogram (generally depicted as an upside-down tree; see

Running time? 

What is the running time per iteration? 
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Now, we would like to find an algorithm to solve (10.11)—that is, a
method to partition the observations intoK clusters such that the objective
of (10.11) is minimized. This is in fact a very difficult problem to solve
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|Ck|
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i,i′∈Ck

p∑

j=1

(xij − xi′j)
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∑

i∈Ck
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j=1

(xij − x̄kj)
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where x̄kj = 1
|Ck|

∑
i∈Ck

xij is the mean for feature j in cluster Ck.

In Step 2(a) the cluster means for each feature are the constants that
minimize the sum-of-squared deviations, and in Step 2(b), reallocating the
observations can only improve (10.12). This means that as the algorithm
is run, the clustering obtained will continually improve until the result no
longer changes; the objective of (10.11) will never increase. When the result
no longer changes, a local optimum has been reached. Figure 10.6 shows
the progression of the algorithm on the toy example from Figure 10.5.
K-means clustering derives its name from the fact that in Step 2(a), the
cluster centroids are computed as the mean of the observations assigned to
each cluster.
Because the K-means algorithm finds a local rather than a global opti-

mum, the results obtained will depend on the initial (random) cluster as-
signment of each observation in Step 1 of Algorithm 10.1. For this reason,
it is important to run the algorithm multiple times from different random
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Running time? 

What is the running time per iteration? 
 
 
 
 
 
 
 
 
 
 
 
Typically, converges very quickly (and in fact, guaranteed to 
converge in a finite number of iterations) 
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Running time? 

 
 
 
 
 
 
 
 
 
 
 
 
Can easily be kernelized. 
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Dealing with local minima 

Run the algorithm multiple times with different initializations. 
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Initialization 

A good initialization can lead to faster convergence to a better 
optimal solution. 
The standard choice:  k random data points 
More sophisticated approaches: 
v  Create a collection of subsamples of the data.  Cluster the 

resulting cluster centers using k-means and use for 
initialization. 

 
v  k-means++:  Choose the first center randomly; subsequent 

centers are chosen with probability proportional to their 
distance to the closest center.  The default in scikit-learn 

16 

P.S. Bradley, and Usama M. Fayyad. Refining Initial Points for K-Means Clustering.  
Proceedings of the Fifteenth International Conference on Machine Learning ICML '98 

Arthur, D. and Vassilvitskii, S. (2007). "k-means++: the advantages of careful seeding”. 
Proceedings of the eighteenth annual ACM-SIAM symposium on Discrete algorithms. 
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Related algorithms 

Related algorithms: 
 
K-medoids 
Partitioning around medoids (PAM) 
 

17 

Sensitivity to scaling 
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8. Distance-based models 8.3 Distance-based clustering

p.251 Figure 8.13: Scale-sensitivity of K -means
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(left) On this data 2-means detects the right clusters. (right) After rescaling the y-axis,
this configuration has a higher between-cluster scatter than the intended one.

Peter Flach (University of Bristol) Machine Learning: Making Sense of Data August 25, 2012 249 / 349

Assumptions behind the model 

K-means assumes spherical clusters. 
 
There are probabilistic extensions that address this to some 
extent. 
 
Probably the most widely used clustering algorithm because of 
its simplicity, speed, and easy implementation 

19 

k-means demo 

20 
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Silhouettes 

How do we know we have a good clustering? 
 
The Silhouette coefficient is defined for each example  
 
 
 
 
a: the mean distance between the example and all other points in 
the same cluster. 
b: the mean distance between the example and all other points 
in the next nearest cluster. 
 
 

21 

s(x) =
b(x)� a(x)

max(b(x), a(x))

Peter J. Rousseeuw (1987). “Silhouettes: a Graphical Aid to the Interpretation and  
Validation of Cluster Analysis”.  Computational and Applied Mathematics 20: 53–65. 

Silhouettes 

The Silhouette coefficient is defined for each example  
 
 
 
Sort s(x) and group by cluster: 

22 

s(x) =
b(x)� a(x)

max(b(x), a(x))

Figures generated using the scikit-learn silhoutte method 

Silhouettes 

The Silhouette coefficient is defined for each example  
 
 
 
Sort s(x) and group by cluster: 

23 

s(x) =
b(x)� a(x)

max(b(x), a(x))

Dendrograms 
Definition:  Given a dataset D, a dendrogram is a binary tree 
with the elements of D at its leaves.  An internal node of the 
tree represents the subset of elements in the leaves of the 
subtree rooted at that node. 

24 
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Hierarchical/agglomerative clustering 

Algorithm outline: 
 
Start with each data point in a separate cluster 
 
At each step merge the closest pair of clusters 

25 

Hierarchical clustering 

Algorithm outline: 
 
Start with each data point in a separate cluster 
 
At each step merge the closest pair of clusters 
 
Need to define a measure of distance between clusters: 

26 

8. Distance-based models 8.4 Hierarchical clustering

p.254 Definition 8.4: Dendrogram and linkage function

Given a data set D , a dendrogram is a binary tree with the elements of D at its
leaves. An internal node of the tree represents the subset of elements in the
leaves of the subtree rooted at that node. The level of a node is the distance
between the two clusters represented by the children of the node. Leaves have
level 0.
A linkage function L : 2X £2X !R calculates the distance between arbitrary
subsets of the instance space, given a distance metric Dis : X £X !R.

Peter Flach (University of Bristol) Machine Learning: Making Sense of Data August 25, 2012 254 / 349

Linkage functions 

v  Single linkage 
v  Smallest pairwise distance between elements from each cluster 

v  Complete linkage 
v  Largest distance between elements from each cluster 

v  Average linkage 
v  The average distance between elements from each cluster 

v  Centroid linkage 
v  Distance between cluster means 

v  Ward’s method 
v  Find the pair of clusters that leads to minimum increase in total 

within-cluster variance after merging.  

27 

Dendrograms revisited 
Interpretation of the vertical dimension:  The distance between 
the clusters when they were merged (the level associated with 
the cluster).  The leaves have level 0. 

28 
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FIGURE 10.9. Left: dendrogram obtained from hierarchically clustering the data
from Figure 10.8 with complete linkage and Euclidean distance. Center: the den-
drogram from the left-hand panel, cut at a height of nine (indicated by the dashed
line). This cut results in two distinct clusters, shown in different colors. Right:
the dendrogram from the left-hand panel, now cut at a height of five. This cut
results in three distinct clusters, shown in different colors. Note that the colors
were not used in clustering, but are simply used for display purposes in this figure.

different the two observations are. Thus, observations that fuse at the very
bottom of the tree are quite similar to each other, whereas observations
that fuse close to the top of the tree will tend to be quite different.
This highlights a very important point in interpreting dendrograms that

is often misunderstood. Consider the left-hand panel of Figure 10.10, which
shows a simple dendrogram obtained from hierarchically clustering nine
observations. One can see that observations 5 and 7 are quite similar to
each other, since they fuse at the lowest point on the dendrogram. Obser-
vations 1 and 6 are also quite similar to each other. However, it is tempting
but incorrect to conclude from the figure that observations 9 and 2 are
quite similar to each other on the basis that they are located near each
other on the dendrogram. In fact, based on the information contained in
the dendrogram, observation 9 is no more similar to observation 2 than it
is to observations 8, 5, and 7. (This can be seen from the right-hand panel
of Figure 10.10, in which the raw data are displayed.) To put it mathe-
matically, there are 2n−1 possible reorderings of the dendrogram, where n
is the number of leaves. This is because at each of the n− 1 points where
fusions occur, the positions of the two fused branches could be swapped
without affecting the meaning of the dendrogram. Therefore, we cannot
draw conclusions about the similarity of two observations based on their
proximity along the horizontal axis. Rather, we draw conclusions about
the similarity of two observations based on the location on the vertical axis
where branches containing those two observations first are fused.
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FIGURE 10.8. Forty-five observations generated in two-dimensional space. In
reality there are three distinct classes, shown in separate colors. However, we will
treat these class labels as unknown and will seek to cluster the observations in
order to discover the classes from the data.

Figure 10.9) is built starting from the leaves and combining clusters up to
the trunk. We will begin with a discussion of how to interpret a dendrogram
and then discuss how hierarchical clustering is actually performed—that is,
how the dendrogram is built.

Interpreting a Dendrogram

We begin with the simulated data set shown in Figure 10.8, consisting of
45 observations in two-dimensional space. The data were generated from a
three-class model; the true class labels for each observation are shown in
distinct colors. However, suppose that the data were observed without the
class labels, and that we wanted to perform hierarchical clustering of the
data. Hierarchical clustering (with complete linkage, to be discussed later)
yields the result shown in the left-hand panel of Figure 10.9. How can we
interpret this dendrogram?
In the left-hand panel of Figure 10.9, each leaf of the dendrogram rep-

resents one of the 45 observations in Figure 10.8. However, as we move
up the tree, some leaves begin to fuse into branches. These correspond to
observations that are similar to each other. As we move higher up the tree,
branches themselves fuse, either with leaves or other branches. The earlier
(lower in the tree) fusions occur, the more similar the groups of observa-
tions are to each other. On the other hand, observations that fuse later
(near the top of the tree) can be quite different. In fact, this statement
can be made precise: for any two observations, we can look for the point in
the tree where branches containing those two observations are first fused.
The height of this fusion, as measured on the vertical axis, indicates how
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FIGURE 10.8. Forty-five observations generated in two-dimensional space. In
reality there are three distinct classes, shown in separate colors. However, we will
treat these class labels as unknown and will seek to cluster the observations in
order to discover the classes from the data.

Figure 10.9) is built starting from the leaves and combining clusters up to
the trunk. We will begin with a discussion of how to interpret a dendrogram
and then discuss how hierarchical clustering is actually performed—that is,
how the dendrogram is built.

Interpreting a Dendrogram

We begin with the simulated data set shown in Figure 10.8, consisting of
45 observations in two-dimensional space. The data were generated from a
three-class model; the true class labels for each observation are shown in
distinct colors. However, suppose that the data were observed without the
class labels, and that we wanted to perform hierarchical clustering of the
data. Hierarchical clustering (with complete linkage, to be discussed later)
yields the result shown in the left-hand panel of Figure 10.9. How can we
interpret this dendrogram?
In the left-hand panel of Figure 10.9, each leaf of the dendrogram rep-

resents one of the 45 observations in Figure 10.8. However, as we move
up the tree, some leaves begin to fuse into branches. These correspond to
observations that are similar to each other. As we move higher up the tree,
branches themselves fuse, either with leaves or other branches. The earlier
(lower in the tree) fusions occur, the more similar the groups of observa-
tions are to each other. On the other hand, observations that fuse later
(near the top of the tree) can be quite different. In fact, this statement
can be made precise: for any two observations, we can look for the point in
the tree where branches containing those two observations are first fused.
The height of this fusion, as measured on the vertical axis, indicates how
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FIGURE 10.9. Left: dendrogram obtained from hierarchically clustering the data
from Figure 10.8 with complete linkage and Euclidean distance. Center: the den-
drogram from the left-hand panel, cut at a height of nine (indicated by the dashed
line). This cut results in two distinct clusters, shown in different colors. Right:
the dendrogram from the left-hand panel, now cut at a height of five. This cut
results in three distinct clusters, shown in different colors. Note that the colors
were not used in clustering, but are simply used for display purposes in this figure.

different the two observations are. Thus, observations that fuse at the very
bottom of the tree are quite similar to each other, whereas observations
that fuse close to the top of the tree will tend to be quite different.
This highlights a very important point in interpreting dendrograms that

is often misunderstood. Consider the left-hand panel of Figure 10.10, which
shows a simple dendrogram obtained from hierarchically clustering nine
observations. One can see that observations 5 and 7 are quite similar to
each other, since they fuse at the lowest point on the dendrogram. Obser-
vations 1 and 6 are also quite similar to each other. However, it is tempting
but incorrect to conclude from the figure that observations 9 and 2 are
quite similar to each other on the basis that they are located near each
other on the dendrogram. In fact, based on the information contained in
the dendrogram, observation 9 is no more similar to observation 2 than it
is to observations 8, 5, and 7. (This can be seen from the right-hand panel
of Figure 10.10, in which the raw data are displayed.) To put it mathe-
matically, there are 2n−1 possible reorderings of the dendrogram, where n
is the number of leaves. This is because at each of the n− 1 points where
fusions occur, the positions of the two fused branches could be swapped
without affecting the meaning of the dendrogram. Therefore, we cannot
draw conclusions about the similarity of two observations based on their
proximity along the horizontal axis. Rather, we draw conclusions about
the similarity of two observations based on the location on the vertical axis
where branches containing those two observations first are fused.

Hierarchical clustering 
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Algorithm 10.2 Hierarchical Clustering

1. Begin with n observations and a measure (such as Euclidean dis-
tance) of all the

(n
2

)
= n(n− 1)/2 pairwise dissimilarities. Treat each

observation as its own cluster.

2. For i = n, n− 1, . . . , 2:

(a) Examine all pairwise inter-cluster dissimilarities among the i
clusters and identify the pair of clusters that are least dissimilar
(that is, most similar). Fuse these two clusters. The dissimilarity
between these two clusters indicates the height in the dendro-
gram at which the fusion should be placed.

(b) Compute the new pairwise inter-cluster dissimilarities among
the i− 1 remaining clusters.

Linkage Description

Complete

Maximal intercluster dissimilarity. Compute all pairwise dis-
similarities between the observations in cluster A and the
observations in cluster B, and record the largest of these
dissimilarities.

Single

Minimal intercluster dissimilarity. Compute all pairwise dis-
similarities between the observations in cluster A and the
observations in cluster B, and record the smallest of these
dissimilarities. Single linkage can result in extended, trailing
clusters in which single observations are fused one-at-a-time.

Average

Mean intercluster dissimilarity. Compute all pairwise dis-
similarities between the observations in cluster A and the
observations in cluster B, and record the average of these
dissimilarities.

Centroid
Dissimilarity between the centroid for cluster A (a mean
vector of length p) and the centroid for cluster B. Centroid
linkage can result in undesirable inversions.

TABLE 10.2. A summary of the four most commonly-used types of linkage in
hierarchical clustering.

linkage are generally preferred over single linkage, as they tend to yield
more balanced dendrograms. Centroid linkage is often used in genomics,
but suffers from a major drawback in that an inversion can occur, whereby

inversion
two clusters are fused at a height below either of the individual clusters in
the dendrogram. This can lead to difficulties in visualization as well as in in-
terpretation of the dendrogram. The dissimilarities computed in Step 2(b)
of the hierarchical clustering algorithm will depend on the type of linkage
used, as well as on the choice of dissimilarity measure. Hence, the resulting

Linkage matters 
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Average Linkage Complete Linkage Single Linkage

FIGURE 10.12. Average, complete, and single linkage applied to an example
data set. Average and complete linkage tend to yield more balanced clusters.

an unusual use of correlation, which is normally computed between vari-
ables; here it is computed between the observation profiles for each pair
of observations. Figure 10.13 illustrates the difference between Euclidean
and correlation-based distance. Correlation-based distance focuses on the
shapes of observation profiles rather than their magnitudes.
The choice of dissimilarity measure is very important, as it has a strong

effect on the resulting dendrogram. In general, careful attention should be
paid to the type of data being clustered and the scientific question at hand.
These considerations should determine what type of dissimilarity measure
is used for hierarchical clustering.
For instance, consider an online retailer interested in clustering shoppers

based on their past shopping histories. The goal is to identify subgroups
of similar shoppers, so that shoppers within each subgroup can be shown
items and advertisements that are particularly likely to interest them. Sup-
pose the data takes the form of a matrix where the rows are the shoppers
and the columns are the items available for purchase; the elements of the
data matrix indicate the number of times a given shopper has purchased a
given item (i.e. a 0 if the shopper has never purchased this item, a 1 if the
shopper has purchased it once, etc.) What type of dissimilarity measure
should be used to cluster the shoppers? If Euclidean distance is used, then
shoppers who have bought very few items overall (i.e. infrequent users of
the online shopping site) will be clustered together. This may not be desir-
able. On the other hand, if correlation-based distance is used, then shoppers
with similar preferences (e.g. shoppers who have bought items A and B but

Linkage matters 
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distance vs similarity 

Hierarchical clustering can be performed with respect to a 
distance measure or a similarity measure. 
 
Correlation is often a better choice: 
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FIGURE 10.13. Three observations with measurements on 20 variables are
shown. Observations 1 and 3 have similar values for each variable and so there
is a small Euclidean distance between them. But they are very weakly correlated,
so they have a large correlation-based distance. On the other hand, observations
1 and 2 have quite different values for each variable, and so there is a large
Euclidean distance between them. But they are highly correlated, so there is a
small correlation-based distance between them.

never items C or D) will be clustered together, even if some shoppers with
these preferences are higher-volume shoppers than others. Therefore, for
this application, correlation-based distance may be a better choice.
In addition to carefully selecting the dissimilarity measure used, one must

also consider whether or not the variables should be scaled to have stan-
dard deviation one before the dissimilarity between the observations is
computed. To illustrate this point, we continue with the online shopping
example just described. Some items may be purchased more frequently than
others; for instance, a shopper might buy ten pairs of socks a year, but a
computer very rarely. High-frequency purchases like socks therefore tend
to have a much larger effect on the inter-shopper dissimilarities, and hence
on the clustering ultimately obtained, than rare purchases like computers.
This may not be desirable. If the variables are scaled to have standard de-
viation one before the inter-observation dissimilarities are computed, then
each variable will in effect be given equal importance in the hierarchical
clustering performed. We might also want to scale the variables to have
standard deviation one if they are measured on different scales; otherwise,
the choice of units (e.g. centimeters versus kilometers) for a particular vari-
able will greatly affect the dissimilarity measure obtained. It should come
as no surprise that whether or not it is a good decision to scale the variables
before computing the dissimilarity measure depends on the application at
hand. An example is shown in Figure 10.14. We note that the issue of
whether or not to scale the variables before performing clustering applies
to K-means clustering as well.

Lots of clustering algorithms out there! 

a 

34 
http://scikit-learn.org/stable/auto_examples/cluster/plot_cluster_comparison.html#comparing-different-clustering-algorithms-on-toy-datasets 

Summary 

Clustering depends on the choice of similarity/distance and 
preprocessing. 
 
Different methods will give different results. 
 
Clustering algorithms will find as many clusters as you ask for:  
need methods for deciding the number of clusters. 
 
Clustering is sensitive to noise. 
 
Hard choices to make – there is no teaching signal as we had in 
supervised learning.  
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