Naive Bayes classification




Probability theory

Random variable: a variable whose possible values are numerical
outcomes of a random phenomenon.

Examples: A person's height, the outcome of a coin toss
Distinguish between discrete and continuous variables.
The distribution of a discrete random variable:

The probabilities of each value it can take.

Notation: P(X = x;).
These numbers satisfy:

Y P(X =u;)=1



Probability theory

Marginal Probability

)

Joint Probability Conditional Probability

p(X =2, Y =y;) = — p(Y = y;| X = ;) = "



Probability theory

A joint probability distribution for two variables is a table.
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If the two variables are binary, how many parameters does it

have?

Let's consider now the joint probability of d variables P(Xy,...,. Xy).

How many parameters does it have if each variable is binary?



Probability theory

Marginalization:
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Product Rule
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The Rules of Probability

Marginalization p(X) =) p(X,Y)
Y

Product Rule p(X,Y) = p(Y|X)p(X)

Independence: X and Y are independent if P(Y|X) = P(Y)

This implies P(X.Y) = P(X) P(Y)



Using probability in learning

Suppose we have access to P(y | x), we would classify according
to argmax, P(y | x).

This is called the Bayes-optimal classifier.

What is the error of such a classifier?

P(y=-1|x) H_'.._EP(y=+1|x)

s




Using probability in learning

P(Y =+|X) P(Y =<|X)
1

Some classifiers model P(Y | X) directly: discriminative learning

However, it's usually easier to model P(X | ¥) from which we can
get P(Y | X) using Bayes rule:

PX]Y)P(Y)
P(X)

P(Y|X) =

This is called generative learning



Maximum likelihood

Fit a probabilistic model P(x | ©) to data
. Estimate ©
Given independent identically distributed (i.i.d.) data
X = (Xq, X5, .., Xp)
. Likelihood

P(X|[0) = P(21|0)P(x2|0), ..., P(zn|0)
« Log likelihood

In P(X|0) = ZlnP ;]0)

Maximum likelihood solution: par‘ame'rers O that
maximize In P(X | ©)



Example

Example: coin toss

Estimate the probability p that a coin lands "Heads" using the
result of n coin tosses, h of which resulted in heads.

The likelihood of the data: P (X|0) = p"(1 — p)"™"
Log likelihood: In P(X|0) = hlnp + (n — h)In(1 — p)

Taking a derivative and setting to O:

OMP(X|) _h_(n-h)
op  p (1-p)

h
n

= p=
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Bayes' rule

From the product rule:

P(Y, X) = P(Y | X) P(X)
and:
P(Y, X)=P(X | Y) P(Y)

Therefore:

PX]Y)P(Y)

PYIX) = =5

This is known as Bayes' rule

1



Bayes' rule

likelihood  prior
PX]Y)P(Y)
P(X)

P(Y|X) =

posterior

posterior o likelihood x prior

P(X) can be computed as:

P(X)=) P(X|Y)P(Y)

But is not important for inferring a label



Maximum a-posteriori and maximum likelihood

The maximum a posteriori (MAP) rule:

P(X|Y)P(Y
ymap = argmax P(Y|X) = arg max (X[Y)P(Y)
Y Y P(X)

= argmax P(X|Y)P(Y)
Y

If we ignore the prior distribution or assume it is uniform we

obtain the maximum likelihood rule:

Yy = argmax P(X|Y)
Y

A classifier that has access to P(Y|X) is a Bayes optimal
classifier.
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Classification with Bayes' rule

We would like to model P(X | Y), where X is a feature vector,
and Y is its associated label.

Task: Predict whether or not a picnic spot is enjoyable

Training Data:  X=(X; X, X3 e Xy) Y
Sky Temp Humid Wind Water Forecst | EnjoySpt
Sunny Warm Normal Strong Warm Same Yes

Sunny Warm High Strong Warm Same Yes
Rainy Cold High Strong Warm Change No
Sunny Warm High Strong Cool Change Yes

N rows

How many parameters?
Prior: P(Y) k-1if k classes
Likelihood: P(X | Y) (29-1)k for binary features
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Naive Bayes classifier

We would like to model P(X | Y), where X is a feature vector,

and Y is its associated label.

Simplifying assumption: conditional independence: given the
class label the features are independent, i.e.

P(X]Y) = P(x:1|Y)P(x2]Y), ..., P(zq]Y)

How many parameters now?
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Naive Bayes classifier

We would like to model P(X | Y), where X is a feature vector,

and Y is its associated label.

Simplifying assumption: conditional independence: given the
class label the features are independent, i.e.

P(X]Y) = P(x:1|Y)P(x2]Y), ..., P(zq]Y)

How many parameters now? dk+k -1
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Naive Bayes classifier

Naive Bayes decision rule:

d
ynp = argmax P(X|Y)P(Y) = argmax | [ P(z;]Y)P(Y)
Y Y ooi=

If conditional independence holds, NB is an optimal classifier!
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Training a Ndive Bayes classifier

Training data: Feature matrix X (n x d) and labels y;,...y,
Maximum likelihood estimates:

Class prior: ﬁ(y) _ ey =y

P(z;,y) - His Xy = xiy =yt /n

Likelihood:  P(x;|y) = Pl {i:yi =y}l/n

18



Example

Email classification

Suppose our vocabulary contains three words a, b and ¢, and we use a
multivariate Bernoulli model for our e-mails, with parameters

0° =(0.5,0.67,0.33) 6 =(0.67,0.33,0.33)

This means, for example, that the presence of b is twice as likely in spam (+),
compared with ham.

The e-mail to be classified contains words a and b but not ¢, and hence is
described by the bit vector x = (1, 1,0). We obtain likelihoods

Px|®) =0.5-0.67-(1-0.33) =0.222 Px|©) =0.67-0.33-(1-0.33) =0.148

The ML classification of x is thus spam.
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Example

Email classification: training data

E-mail a? b? c¢? Class

€] +
() +
e3 +

+

Q

=~
O 4L a4 a4 a a 0O 0
O O O - A O - =
O O - O O O - O

What are the parameters of the model?
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Example

Email classification: training data

E-mail a? b? ¢? Class

el 0 1 0 +
e 0 1 1 +
es 1 0 0 +
ey 1 1 0 +
€5 1 1 0 -
€g 1 0 1 -
e7 1 0 O -
es 0O 0 O -

What are the parameters of the model?

by < lizm=u}
B f’(xz,y) _ i Xij = 2,9 = y}|/n
P(y) {i :yi = y}l/n




Example

Email classification: training data

E-mail a? b? ¢? Class

e1 0 1 0 +
e
€3
€4
€5
€6
€7
eg

O - 4 4 4a a0
O O O = = 0O =
o O - O O O —

L+ + 4

What are the parameters of the model?

P(+)= 0.5, P(-)= 0.5 Ply) = {i: y;z y}|

A

P(al+)=0.5, P(al-)=0.75 Plzly) = P](;ﬁ(io)y) _ i )’Eyzﬂz Zz'};f}\/n
P(b|+) = 0.75, P(b|-)= 0.25 Y Y
P(c|+) = 0.25, P(c|-)= 0.25

22



Comments on Naive Bayes

Usually features are not conditionally independent, i.e.

P(X[Y) # P(x1|Y)P(x2|Y), ..., P(zaY)

And yet, one of the most widely used classifiers. Easy to trainl

It often performs well even when the assumption is violated.

Domingos, P., & Pazzani, M. (1997). Beyond Independence: Conditions
for the Optimality of the Simple Bayesian Classifier. Machine

Learning. 29, 103-130.
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When there are few training examples

What if you never see a training example where x;=a when
y=spam?

P(x | spam) = P(a | spam) P(b | spam) P(c | spam) = O

What to do?
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When there are few training examples

What if you never see a training example where x;=a when
y=spam?

P(x | spam) = P(a | spam) P(b | spam) P(c | spam) = O
What to do?

Add "virtual” examples for which x;=a when y=spam.
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Naive Bayes for continuous variables

Need to talk about continuous distributions!
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Continuous Probability Distributions

The probability of the random variable assuming a value within
some given interval from x; to x, is defined to be the area under the
graph of the probability density function between x; and x,.

/ Uniform \ /f (x) Normal/ Gaussian\

Kx

K X1 X

KR

K X1 X




Expectations

Discrete variables Continuous variables

Elf] = Y p(a)f(z) E[f] = / p(2)f () da

Conditional expectation

By fly] = Zp(x!y)f(x) (discrete)

1 X Approximate expectation
E[f] ~ N Z f(xy) (discrete and continuous)



The Gaussian (hormal) distribution

1 1
N (zlp,0%) = 2mo)i2 P {—272(33 - M)2}

A

Melwo) N (|, 02) > 0

/ N (z|p,0%) dz =1
20 o

Elz] = /_oo N (z|p,0?) zdz = p




Properties of the Gaussian distribution
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Standard Normal Distribution

A random variable having a normal distribution
with a mean of 0 and a standard deviation of 1 is

said to have a standard normal probability
distribution.




Standard Normal Probability Distribution

Converting to the Standard Normal Distribution

We can think of z as a measure of the number of
standard deviations x is from u.



Gaussian Parameter Estimation

p(x)

Likelihood function

N(a?nLLL, 02)




Maximum (Log) Likelihood

N
1 N N
Inp (x|,u,a2) =53 E (zp — p)? — 5 Ino? — 5} In(27)
n=1
1 & 1 o
2 — — —
HML = < d "y oML = > (zn — pnir)



Example
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Gaussian models

Assume we have data that belongs to three classes, and assume
a likelihood that follows a Gaussian distribution
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Gaussian Naive Bayes

Likelihood function:

1 (z — pix)?
(X; =z Uk ) o exp ( )

Need to estimate mean and variance for each feature in each
class.
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Summary

Naive Bayes classifier:

+ What's the assumption

« Why we make it

+ How we learn it

Naive Bayes for discrete data
Gaussian naive Bayes
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