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Learning theory and the VC dimension 

Chapters 1-2 

1 https://xkcd.com/882/ 

Projects 

 
What you need to prepare: 
²  Poster (on-campus section) or online presentation 

(online students) 
²  Final report 

Poster session:  during the last class  session 
Online presentation:  use the youSeeU tool in Canvas 
Final report due the Tuesday of finals week. 
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Final report 

Structure: 
²  Abstract 
²  Introduction 
²  Methods 
²  Results and Discussion 
²  Conclusions 
²  References 
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References 

Your references should not look like this: 
 
 
 
Better to cite an original article: 
Rumelhart, David E.; Hinton, Geoffrey E., Williams, Ronald J. (8 
October 1986). "Learning representations by back-propagating 
errors". Nature 323 (6088): 533–536. 
 

If you must cite wikipedia: 
Multi-layer perceptron. (n.d.). In Wikipedia. Retrieved 
November 17, 2016, from https://en.wikipedia.org/wiki/
Multilayer_perceptron 
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But outside the for loop, for output layer linear activation function is called. linear(np.dot(a[i+1],

self.weights[i+1])) So this will use linear activation for output layer.
Below is the modified backward function from neural network class.

def backward ( s e l f , y , a ) :
”””

compute the d e l t a s f o r example i

”””

de l t a s = [ ( y � a [�1]) ⇤ s e l f . l i n e a r d e r ( a [ �1 ] ) ]
for l in range ( len ( a ) � 2 , 0 , �1): # we need to beg in at the second to l a s t l a y e r

de l t a s . append ( d e l t a s [ �1 ] . dot ( s e l f . we ights [ l ] . T)⇤ s e l f . a c t i v a t i o n d e r i v ( a [ l ] ) )
d e l t a s . r e v e r s e ( )
return de l t a s

Modification -

For the output layer(last layer) linear der function is called.
deltas = [(y - a[-1]) * self.linear der(a[-1])]

as a[-1] means last entry corresponds to output layer.
Rest of the layers use activation and activation deriv function which are passed as the param(tanh,logistic,linear).

4 Code/File Details

Files -
1. assignment5.py - main file to run which imports all the below modules which produces results, plots
2. utils.py - Data load functions, plot functions.
3. plotsingleDoubleNN.py - plots for single and two layer neural network
4. nnet.py- neural network implementation provided on the course page
5. nnetwd.py � neuralnetworkwithweightdecayfactoradded.

6. wd.py - plot for weight decay neural network.

linear.py - using linear activation in output layer

These all assume, below data folder is there in the current dir.

MNIST

This data folder should contain data files for trainig and testing. (MNISTtest.csv,MNISTtestlabels.csv,MNISTtrain.csv,MNISTtrainlabels.csv)

5 References

References

[1] Wikipedia,

https://en.wikipedia.org/wiki/Multilayerperceptron

[2] Scikit,

http://scikit-learn.org/stable/
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GOstruct	2.0:		
Automated	Protein	Function	Prediction	for	Annotated	Proteins	

Indika	Kahanda1	and		Asa	Ben-Hur1	

1Department	of	Computer	Science,	Colorado	State	University	

INTRODUCTION	

GOSTRUCT	2.0	

RESULTS	

NOVEL	ANNOTATIONS	ARE	HARD	

Labels	

•  GO	annotaEons	with	experimental	evidence	codes.	

Features	

•  Trans/Loc:	sequence-based	features	that	capture	localizaEon	signals,	transmembrane	

domain	predicEons,	and	low	complexity	regions	(2).	

•  Homology:	PSI-BLAST	hits,	represented	using	a	variant	of	GOtcha	scores.			

•  Network:	 PPI	 and	 other	 funcEonal	 associaEons	 (co-expression,	 co-occurrence,	 etc.)	
from	BioGRID	3.2.106,	STRING	9.1	and	GeneMANIA	3.1.2.			

•  Literature:	 co-occurrence	 of	 protein	 names	 and	 GO	 terms	 at	 the	 sentence	 and	

paragraph	level	extracted	from	all	full-text	publicaEons	in	PubMed;	this	pipeline	is	an	

improved	version	of	the	one	used	in	our	earlier	work	(2).		

GOSTRUCT	2.0	CONSTRAINTS	
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1.  Artem	Sokolov	and	Asa	Ben-Hur.	Hierarchical	classificaEon	of	gene	ontology	terms	using	the	GOstruct	

method.		J.	BioinformaEcs	and	ComputaEonal	Biology,	2010.	

2.  Artem	 Sokolov,	 Christopher	 Funk,	 Kiley	 Graim,	 Karin	 Verspoor,	 and	 Asa	 Ben-Hur.	 Combining	

heterogeneous	data	sources	for	accurate	funcEonal	annotaEon	of	proteins.	BMC	BioinformaEcs,	2013	

3.  I.	Kahanda,	C.	Funk,	F.	Ullah,	K.	Verspoor,	and	A.	Ben-Hur.	A	close	look	at	protein	funcEon		predicEon	

evaluaEon	protocols.	GigaScience,	Special	Issue	on	protein	funcEon,	2015.		

4.  Predrag	Radivojac,	Wyab	T.	Clark,	Iddo	Friedberg,	et	al.	A	large-scale	evaluaEon	of	computaEonal	
protein	funcEon	predicEon.	Nat	Meth,	2013.	

	

	

Despite	 the	 promise	 of	 automated	 funcEon	 predicEon,	 there	 is	 significant	 room	 for	

improvement	in	performance	of	exisEng	methods	as	demonstrated	in	the	recent	CAFA	

compeEEons.	

	

CAFA1	vs	CAFA2	

While	 in	 CAFA1	 parEcipants	 were	 asked	 to	 annotate	 proteins	 with	 no	 exisEng	

annotaEons,	CAFA2	introduced	a	new	variant	of	the	problem:	extend	the	annotaEons	of	

previously	annotated	proteins.	

		

	

	

Comparison	of	GOstruct	2.0	with	the	original	version	on	predicEon	of	novel	annotaEons:	

	

This	project	was	supported	by	NSF	Advances	in	biological	informaAcs	0965768	

CONCLUSIONS	
For	methods	that	consider	the	structure	of	the	GO	hierarchy	it	is	important	to	model	the	

fact	that	annotaEons	accumulate	over	Eme,	and	explicitly	represent	the	incompleteness	

of	annotaEons.	

CAFA2		CAFA1		

CAFA2:		Submit	predicEons	for	both	annotated	and	

unannotated	proteins.	

A	more	realisEc	scenario,	as	GO	annotaEons	are	

incomplete,	and	new	annotaEons	are	acquired	over	

Eme	

Two	tasks:	

PredicEng	novel	annotaEons	for	annotated	

proteins	(NA)	

PredicEng		annotaEons	for	unannotated	

proteins	(NP)	
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GOstruct	:	structured	SVM	that	predicts	the	set	of	annotaEons	associated	with	a	protein.	

GOstruct	2.0:		Improved	version	for	beber	handling	of	NA.	

No	longer	assumes	that	annotaEons	are	complete.	

GOstruct uses the following structured SVM formulation for learning,

min
w,✏i

1

2
||w||22 +

C

n

nX

i=1

✏
i

subject to : f(x
i

, y
i

)�max
y2Yc

f(x
i

, y) � 1� ✏
i

for i = 1, ..., n(1)

✏
i

� 0 for i = 1, ..., n(2)

where w is the weight vector, C is a user-specified parameter, Y
c

is the set of candidate

labels, ✏
i

are the slack variables and || · ||2 is the L2 norm. The first constraint, Equation

(1), ensures that the compatibility score for the actual label of a protein is higher than all

other candidate labels.

In the structured-output setting, kernels correspond to dot products in the joint input-

output feature space, and they are functions of both inputs and outputs. GOstruct uses a

joint kernel that is the product of the input-space and the output-space kernels:

K((x1, y1), (x2, y2)) = KX (x1, x2)KY(y1, y2).

Di↵erent sources of data are combined by adding linear kernels at the input-space level, and

for the output space we use a linear kernel between label vectors. Each kernel is normalized

according to

K
norm

(z1, z2) = K(z1, z2)/
p
K(z1, z1)K(z2, z2)

before being used to construct the joint input-output kernel.

GOstruct uses a set of heterogeneous data sources as input features: features based on

protein sequence properties (such as localization features), homology-based features, features
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Original	GOstruct	structured	SVM:	

	

GOstruct	2.0:		reduced	penalty	for	predicted	labels	that	are	extensions	of	a	known	label.	
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yeast	

For	unannotated	proteins,	results	for	the	two	versions	are	similar.	

	

human	

Computational learning theory 

What can we prove about the relationship between Ein 
and Eout? 
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The bin model 

Consider a bin with green and 
red marbles where the 
probability of picking a red 
marble is an unknown 
parameter µ. 
 
Pick a sample of N marbles to 
estimate it. 
The fraction of red marbles 
in the sample:  ν 
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Population Mean from Sample Mean

SAMPLE

BIN

µ = probability to
pick a red marble

ν = fraction of red
marbles in sample

The BIN Model

• Bin with red and green marbles.

• Pick a sample of N marbles independently.

• µ: probability to pick a red marble.
ν: fraction of red marbles in the sample.

Sample −→ the data set −→ ν

BIN −→ outside the data −→ µ

Can we say anything about µ (outside the data) after observing ν (the data)?
ANSWER: No. It is possible for the sample to be all green marbles and the bin to be mostly red.

Then, why do we trust polling (e.g. to predict the outcome of the presidential election).
ANSWER: The bad case is possible, but not probable.

c⃝ AML Creator: Malik Magdon-Ismail Is Learning Feasible: 7 /27 Hoeffding −→

What can we say about µ after observing the data? 

The bin model 

8 

Population Mean from Sample Mean

SAMPLE

BIN

µ = probability to
pick a red marble

ν = fraction of red
marbles in sample

The BIN Model

• Bin with red and green marbles.

• Pick a sample of N marbles independently.

• µ: probability to pick a red marble.
ν: fraction of red marbles in the sample.

Sample −→ the data set −→ ν

BIN −→ outside the data −→ µ

Can we say anything about µ (outside the data) after observing ν (the data)?
ANSWER: No. It is possible for the sample to be all green marbles and the bin to be mostly red.

Then, why do we trust polling (e.g. to predict the outcome of the presidential election).
ANSWER: The bad case is possible, but not probable.

c⃝ AML Creator: Malik Magdon-Ismail Is Learning Feasible: 7 /27 Hoeffding −→

µ and ν could be far off, but that’s not likely.  
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Hoeffding’s inequality 

In a big sample produced in an i.i.d. fashion µ and ν are close 
with high probability: 
 
 
 
 
 
 
In other words, the statement µ = ν is probably approximately 
correct (PAC)  
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ν µ

N ν µ ϵ

[ |ν − µ| > ϵ ] ≤ 2e−2ϵ2N

µ = ν

⃝ AM
L

Hoeffding’s inequality 

In a big sample produced in an i.i.d. fashion µ and ν are close 
with high probability: 
 
 
 
 
 
 
Example:  pick a sample of size N=1000. 
99% of the time µ and ν are within 0.05 of each other. 
In other words, if I claim that µ ∈ [ν – 0.05, ν + 0.05], I will be 
right 99% of the time. 

10 

ν µ

N ν µ ϵ

[ |ν − µ| > ϵ ] ≤ 2e−2ϵ2N

µ = ν

⃝ AM
L

Hoeffding’s inequality 

In a big sample produced in an i.i.d. fashion µ and ν are close 
with high probability: 
 
 
 
 
 
Comments: 
ü  The bound does not depend on µ 
ü  As N grows, our level of certainty increases.   
ü  The more you want to get close, the larger N needs to be. 
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ν µ

N ν µ ϵ

[ |ν − µ| > ϵ ] ≤ 2e−2ϵ2N

µ = ν

⃝ AM
L

Connection to learning 
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Relating the Bin to Learning - the Data

Target Function f Fixed a hypothesis h

Age

In
co

m
e

Age

In
co

m
e

Age

In
co

m
e

green data: h(xn) = f(xn)
red data: h(xn) ̸= f(xn)

Ein(h) = fraction of red data

↑
in-sample

↑
misclassified

KNOWN!

c⃝ AML Creator: Malik Magdon-Ismail Is Learning Feasible: 15 /27 Learning vs. bin −→
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Connection to learning 

Both µ and ν depend on the 
chosen hypothesis 
ν represents Ein 
µ represents Eout 

 
The Hoeffding inequality 
becomes:  
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Hi

Hi

E

E

(h)out

in(h)

µ ν h

ν E (h)

µ E (h)

P [ |E (h) −E (h)| > ϵ ] ≤ 2e−2ϵ2N

⃝ AM
L

Hi

Hi

h f x(  )=  (  )

h f xx(  )=  (  )

x
h

h ν µ

h

ν

h

⃝ AM
L

Connection to learning 

Both µ and ν depend on the 
chosen hypothesis 
ν represents Ein 
µ represents Eout 

 
The Hoeffding inequality 
becomes:  
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Hi

Hi

E

E

(h)out

in(h)

µ ν h

ν E (h)

µ E (h)

P [ |E (h) −E (h)| > ϵ ] ≤ 2e−2ϵ2N

⃝ AM
L

Hi

Hi

E

E

(h)out

in(h)

µ ν h

ν E (h)

µ E (h)

P [ |E (h) −E (h)| > ϵ ] ≤ 2e−2ϵ2N

⃝ AM
L

Are we done? 

Not quite: 
 
The hypothesis h was fixed. 
 
In real learning we have a hypothesis 
set in which we search for one with 
low Ein 
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Hi

Hi

E

E

(h)out

in(h)

µ ν h

ν E (h)

µ E (h)

P [ |E (h) −E (h)| > ϵ ] ≤ 2e−2ϵ2N

⃝ AM
L

Generalizing the bin model 

Our hypothesis is chosen from a finite hypothesis set: 
 
 
 
 
 
 
 
 
 
 
Hoeffding’s inequality no longer holds 
 

16 

h1 h2 hM

Eout 1h(    ) Eout h2(    ) Eout hM(     )

inE 1h(    ) inE h(    )2 inE hM(     )

. . . . . . . .

top

bottom

⃝ AM
L
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Let’s play with coins 

A group of students each has a coin, and is asked to do 
the following: 
 
ü  Toss your coin 5 times. 
ü  Report the number of heads. 
 
What’s the smallest number of heads obtained? 

17 

Let’s play with coins 

Question:  if you toss a fair coin 10 times what’s the 
probability of getting heads 0 times? 
 
0.001 
 
Question:  if you toss 1000 fair coins 10 times each, 
what’s the probability that some coin will lands heads 0 
times? 
 
0.63  

18 

Do jelly beans cause acne? 

19 https://xkcd.com/882/ 

Do jelly beans cause acne? 

20 https://xkcd.com/882/ 
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Do jelly beans cause acne? 

21 https://xkcd.com/882/ 

Addressing the multiple hypotheses issue 

The solution is simple: 

22 

P[ |E (g) − E (g)| > ϵ ] ≤ P[ |E (h1) − E (h1)| > ϵ

or |E (h2) − E (h2)| > ϵ

· · ·

or |E (hM) − E (hM)| > ϵ ]

≤
M∑

m=1

P [|E (hm) − E (hm)| > ϵ]

⃝ AM
L

P[ |E (g) − E (g)| > ϵ ] ≤
M∑

m=1

P [|E (hm) − E (hm)| > ϵ]

≤
M∑

m=1

2e−2ϵ2N

P[|E (g) − E (g)| > ϵ] ≤ 2Me−2ϵ2N

⃝ AM
L

P[ |E (g) − E (g)| > ϵ ] ≤
M∑

m=1

P [|E (hm) − E (hm)| > ϵ]

≤
M∑

m=1

2e−2ϵ2N

P[|E (g) − E (g)| > ϵ] ≤ 2Me−2ϵ2N

⃝ AM
L

And the final result: 

Hoeffding says that Ein(g) ≈ Eout(g) for Finite H

P [|Ein(g)−Eout(g)| > ϵ] ≤ 2|H|e−2ϵ2N, for any ϵ > 0.

P [|Ein(g)−Eout(g)| ≤ ϵ] ≥ 1− 2|H|e−2ϵ2N, for any ϵ > 0.

We don’t care how g was obtained, as long as it is from H

Some Basic Probability
Events A,B

Implication
If A =⇒ B (A ⊆ B) then P[A] ≤ P[B].

Union Bound
P[A or B] = P[A ∪ B] ≤ P[A] + P[B].

Bayes’ Rule

P[A|B] =
P[B|A] · P[A]

P[B]

Proof: Let M = |H|.

The event “|Ein(g)−Eout(g)| > ϵ” implies
“|Ein(h1)− Eout(h1)| > ϵ” OR . . .OR “|Ein(hM)− Eout(hM)| > ϵ”

So, by the implication and union bounds:

P[|Ein(g)− Eout(g)| > ϵ] ≤ P

[

M

OR
m=1

|Ein(hM)− Eout(hM)| > ϵ

]

≤
M
∑

m=1

P[|Ein(hm)−Eout(hm)| > ϵ],

≤ 2Me−2ϵ2N .

(The last inequality is because we can apply the Hoeffding bound to each summand)

c⃝ AML Creator: Malik Magdon-Ismail Real Learning is Feasible: 5 /16 Hoeffding as error bar −→

Implications of the Hoeffding bound 
 

Lemma: with probability at least 1-δ 
 
 
Proof: 
Choose 
 
Then                                                 i.e., with probability at least 1-δ 
 
                                         and solving for epsilon, 
our result is obtained.  
  23 

Interpreting the Hoeffding Bound for Finite |H|

P [|Ein(g)−Eout(g)| > ϵ] ≤ 2|H|e−2ϵ2N, for any ϵ > 0.

P [|Ein(g)−Eout(g)| ≤ ϵ] ≥ 1− 2|H|e−2ϵ2N, for any ϵ > 0.

Theorem. With probability at least 1− δ,

Eout(g) ≤ Ein(g) +

√

1

2N
log

2|H|

δ
.

We don’t care how g was obtained, as long as g ∈ H

Proof: Let δ = 2|H|e−2ϵ2N . Then

P [|Ein(g)− Eout(g)| ≤ ϵ] ≥ 1− δ.

In words, with probability at least 1− δ,

|Ein(g)−Eout(g)| ≤ ϵ.

This implies

Eout(g) ≤ Ein(g) + ϵ.

From the definition of δ, solve for ϵ:

ϵ =

√

1

2N
log

2|H|

δ
.

c⃝ AML Creator: Malik Magdon-Ismail Real Learning is Feasible: 6 /16 Ein is close to Eout for small H −→
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Implications of the Hoeffding bound 

Lemma: with probability at least 1-δ 
 
 
 
Implication: 
 
If we also manage to obtain Ein(g) ≈ 0 then  Eout(g) ≈ 0. 
 
 
The tradeoff: 
v  Small |H| à Ein ≈ Eout 

v  Large |H| à Ein ≈ 0 
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Interpreting the Hoeffding Bound for Finite |H|
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Ein Reaches Outside to Eout when |H| is Small

Eout(g) ≤ Ein(g) +

√

1

2N
log

2|H|

δ
.

If N ≫ ln |H|, then Eout(g) ≈ Ein(g).

• Does not depend on X , P (x), f or how g is found.

• Only requires P (x) to generate the data points independently and also the test point.

What about Eout ≈ 0?

c⃝ AML Creator: Malik Magdon-Ismail Real Learning is Feasible: 7 /16 2 step approach −→

The 2 Step Approach to Getting Eout ≈ 0:

(1) Eout(g) ≈ Ein(g).
(2) Ein(g) ≈ 0.

Together, these ensure Eout ≈ 0.

How to verify (1) since we do not know Eout

– must ensure it theoretically - Hoeffding.

We can ensure (2) (for example PLA)
– modulo that we can guarantee (1)

There is a tradeoff:

• Small |H| =⇒ Ein ≈ Eout

• Large |H| =⇒ Ein ≈ 0 is more likely.
in-sample error

model complexity
√

1
2N log 2|H|

δ

out-of-sample error

|H|

E
rr
or

|H|∗

c⃝ AML Creator: Malik Magdon-Ismail Real Learning is Feasible: 8 /16 Summary: feasibility of learning −→
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Are we done? 

Lemma: with probability at least 1-δ 
 
 
 
Implication: 
 
 
This does not apply to even a simple classifier such as the 
perceptron:  we do NOT have a finite hypothesis space. 
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