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Naïve Bayes classification 
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Probability theory 

Random variable:  a variable whose possible values are numerical 
outcomes of a random phenomenon. 
 
Examples:  A person’s height, the outcome of a coin toss 
 
Distinguish between discrete and continuous variables. 
 
The distribution of a discrete random variable: 
The probabilities of each value it can take.   
Notation: P(X = xi). 
These numbers satisfy: 
 
 

2 

X

i

P (X = xi) = 1

Probability theory 

A joint probability distribution for two variables is a table. 
 
 
 
 
 
 
If the two variables are binary, how many parameters does it 
have? 
 
Let’s consider now the joint probability of d variables P(X1,…,Xd). 
 
How many parameters does it have if each variable is binary? 
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Probability theory 

 
Marginal Probability 
 
 
 
 
Conditional Probability 

Joint Probability 
 

pij
P (X = xi) =

X

j

P (X = xi, Y = yj)
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The rules of probability 

 
Marginalization 
 
Product Rule 

Independence:  X and Y are independent if P(Y|X) = P(Y) 
 
This implies  P(X,Y) = P(X) P(Y) 

Using probability in learning 

Suppose we have access to P(y | x), we would make a prediction 
according to argmaxy P(y | x).  
This is called the Bayes-optimal classifier. 
 
What is the error of such a classifier? 
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Figure 5. Example of the two regions R1 and R2 formed by the Bayesian classifier
for the case of two classes.

from the features of the classes known a priori. On the other hand, if the probability
density function is not known initially, nonparametric estimation methods are necessary.
These methods are variations of the histogram approximation technique for a probability
density function. In the next subsections, we describe parametric and nonparametric
classification.

4.2.1. Parametric classification. In this method, the functional form of the probability
density function is known or can be at least estimated. In most cases, each class
of observations (e.g. network models) presents a Gaussian like distribution in the d-
dimensional feature space, defined by a set of d measurements. In this way, the data
distribution for a given class c is described by

Pc(x⃗) =
1

(2π)d|Σ|1/2
exp

{
−1

2
(x⃗ − µ⃗c)

T Σ−1(x⃗ − µ⃗c)

}
, (19)

where µ⃗ is the d-dimensional average vector µ⃗ = E [x⃗], E is the expectation [26], and Σ is
the d × d covariance matrix, given by

Σ = E [(x⃗ − µ⃗)(x⃗ − µ⃗)T ], (20)

which is symmetric and has d(d + 1)/2 independent components. The term inside the
multivariate normal density is the Mahalanobis distance, ∆ = (x⃗ − µ⃗)T Σ−1(x⃗ − µ⃗), from
x⃗ to µ⃗.

The first step for the parametric classification is to compute the average of each
measurement for all elements of each class c and the respective covariance matrix, which
are used to estimate Pc. The classification is performed considering the decision rule
described above, i.e. for a given observation i (network, community or vertex), whose
vector feature is x⃗i, the values Pc(x⃗i) are calculated for each class c. Then, the observation
i is associated to the class with the largest probability. It should be noticed that the
classification can be performed in the original space or the projections obtained by the
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Using probability in learning 

  
 
 
 
 
 
Some classifiers model P(Y | X) directly:  discriminative learning 
 
However, it’s usually easier to model P(X | Y) from which we can 
get P(Y | X) using Bayes rule: 
 
 
This is called generative learning 
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P (Y |X) =
P (X|Y )P (Y )

P (X)
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Maximum likelihood 

Fit a probabilistic model P(x | θ) to data 
■  Estimate θ 

Given independent identically distributed (i.i.d.) data X = 
(x1, x2, …, xn) 
■  Likelihood 

■  Log likelihood 

 
Maximum likelihood solution:  parameters θ that maximize 
ln P(X | θ) 

lnP (X|✓) =
nX

i=1

lnP (xi|✓)

P (X|✓) = P (x1|✓)P (x2|✓), . . . , P (xn|✓)
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Example 

Example: coin toss  
Estimate the probability p that a coin lands “Heads” using the 
result of n coin tosses, h of which resulted in heads. 
 
The likelihood of the data: 
 
Log likelihood: 
 
Taking a derivative and setting to 0: 
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P (X|✓) = ph(1� p)n�h

lnP (X|✓) = h ln p+ (n� h) ln(1� p)

@ lnP (X|✓)
@p

=
h

p
� (n� h)

(1� p)
= 0

) p =
h

n

Bayes’ rule 

From the product rule: 
 

 P(Y, X) = P(Y | X) P(X) 
and: 

 P(Y, X) = P(X | Y) P(Y) 
 
Therefore: 
 
 
 
This is known as Bayes’ rule 
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P (Y |X) =
P (X|Y )P (Y )

P (X)

Bayes’ rule 

posterior ∝ likelihood × prior 

P (Y |X) =
P (X|Y )P (Y )

P (X)
posterior 

prior 
 

likelihood  

P (X) =
X

Y

P (X|Y )P (Y )

P(X) can be computed as: 
 
 
 
 
But is not important for inferring a label 

Maximum a-posteriori and maximum likelihood 

The maximum a posteriori (MAP) rule: 
 
 
 
If we ignore the prior distribution or assume it is uniform we 
obtain the maximum likelihood rule: 
 
 
 
A classifier that has access to P(Y|X) is a Bayes optimal 
classifier. 
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yMAP = argmax

Y
P (Y |X) = argmax

Y

P (X|Y )P (Y )

P (X)

= argmax

Y
P (X|Y )P (Y )

yML = argmax

Y
P (X|Y )
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Classification with Bayes’ rule 

We would like to model P(X | Y), where X is a feature vector, 
and Y is its associated label. 
 
 
 
 
 
 
 
 
 
How many parameters? 
Prior:  P(Y)                 k-1 if k classes 
Likelihood:  P(X | Y)   (2d – 1)k   for binary features 
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Learning&the&Op)mal&Classifier&
Task:%Predict%whether%or%not%a%picnic%spot%is%enjoyable%
%

Training&Data:&&

Lets&learn&P(Y|X)&–&how&many&parameters?&

9%

X%=%(X1%%%%%%%X2%%%%%%%%X3%%%%%%%%…%%%%%%%%…%%%%%%%Xd)%%%%%%%%%%Y%

Prior:%P(Y%=%y)%for%all%y% %%

Likelihood:%P(X=x|Y%=%y)%for%all%x,y %%

n&rows&

KR1&if&K&labels&

(2d&–&1)K&if&d&binary&features%

Naïve Bayes classifier 

We would like to model P(X | Y), where X is a feature vector, 
and Y is its associated label. 
 
Simplifying assumption:  conditional independence:  given the 
class label the features are independent, i.e. 
 
 
 
How many parameters now? 
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P (X|Y ) = P (x1|Y )P (x2|Y ), . . . , P (xd|Y )

Naïve Bayes classifier 

We would like to model P(X | Y), where X is a feature vector, 
and Y is its associated label. 
 
Simplifying assumption:  conditional independence:  given the 
class label the features are independent, i.e. 
 
 
 
How many parameters now?   dk + k - 1 
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P (X|Y ) = P (x1|Y )P (x2|Y ), . . . , P (xd|Y )

Naïve Bayes classifier 

Naïve Bayes decision rule: 
 
 
 
 
If conditional independence holds, NB is an optimal classifier!  

16 

yNB = argmax

Y
P (X|Y )P (Y ) = argmax

Y

dY

i=1

P (xi|Y )P (Y )
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Training a Naïve Bayes classifier 

Training data:  Feature matrix X (n x d) and labels y1,…yn 
 
Maximum likelihood estimates: 
 
Class prior:  
 
 
Likelihood:   
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P̂ (y) =
|{i : yi = y}|

n

P̂ (xi|y) =
P̂ (xi, y)

P̂ (y)
=

|{i : Xij = xi, yi = y}|/n
|{i : yi = y}|/n

Example 

Email classification 
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9. Probabilistic models 9.2 Probabilistic models for categorical data

p.276 Example 9.4: Prediction using a naive Bayes model I

Suppose our vocabulary contains three words a, b and c, and we use a
multivariate Bernoulli model for our e-mails, with parameters

✓© = (0.5,0.67,0.33) ✓™ = (0.67,0.33,0.33)

This means, for example, that the presence of b is twice as likely in spam (+),
compared with ham.
The e-mail to be classified contains words a and b but not c, and hence is
described by the bit vector x = (1,1,0). We obtain likelihoods

P (x|©) = 0.5·0.67·(1°0.33) = 0.222 P (x|™) = 0.67·0.33·(1°0.33) = 0.148

The ML classification of x is thus spam.

Peter Flach (University of Bristol) Machine Learning: Making Sense of Data August 25, 2012 273 / 349

Example 

Email classification:  training data 
 
 
 
 
 
 
 
 
 
 
 
What are the parameters of the model? 
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9. Probabilistic models 9.2 Probabilistic models for categorical data

p.280 Table 9.1: Training data for naive Bayes

E-mail #a #b #c Class

e1 0 3 0 +
e2 0 3 3 +
e3 3 0 0 +
e4 2 3 0 +
e5 4 3 0 °
e6 4 0 3 °
e7 3 0 0 °
e8 0 0 0 °

E-mail a? b? c? Class

e1 0 1 0 +
e2 0 1 1 +
e3 1 0 0 +
e4 1 1 0 +
e5 1 1 0 °
e6 1 0 1 °
e7 1 0 0 °
e8 0 0 0 °

(left) A small e-mail data set described by count vectors. (right) The same data set
described by bit vectors.

Peter Flach (University of Bristol) Machine Learning: Making Sense of Data August 25, 2012 277 / 349

Example 

Email classification:  training data 
 
 
 
 
 
 
What are the parameters of the model? 
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P̂ (y) =
|{i : yi = y}|

n

P̂ (xi|y) =
P̂ (xi, y)

P̂ (y)
=

|{i : Xij = xi, yi = y}|/n
|{i : yi = y}|/n
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Example 

Email classification:  training data 
 
 
 
 
 
 
What are the parameters of the model? 
 
P(+) = 0.5,  P(-) = 0.5 
 
P(a|+) = 0.5,   P(a|-)= 0.75 
P(b|+) = 0.75, P(b|-)= 0.25 
P(c|+) = 0.25, P(c|-)= 0.25 
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Comments on Naïve Bayes 

Usually features are not conditionally independent, i.e. 
 
 
Despite that, Naïve Bayes is still one of the most widely used 
classifiers.  Easy and fast training. 
 
It often performs well even when the assumption is violated. 

Domingos, P., & Pazzani, M. (1997). Beyond Independence: Conditions 
for the Optimality of the Simple Bayesian Classifier. Machine 
Learning. 29, 103-130.  
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P (X|Y ) 6= P (x1|Y )P (x2|Y ), . . . , P (xd|Y )

When there are few training examples 

What if you never see a training example where x1=a when 
y=spam? 
 
P(x | spam) = P(a | spam) P(b | spam) P(c | spam) = 0 
 
What to do? 
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When there are few training examples 

What if you never see a training example where x1=a when 
y=spam? 
 
P(x | spam) = P(a | spam) P(b | spam) P(c | spam) = 0 
 
What to do? 
 
Add “virtual” examples for which x1=a when y=spam. 
 
 
 

24 
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Naïve Bayes for continuous variables 

 
Need to talk about continuous distributions! 

25 

f (x) 

 x 

Uniform 

 x1  x2 

x 

f (x) 
Normal/Gaussian 

 x1  x2 

Continuous Probability Distributions 

The probability of the random variable assuming a value within 
some given interval from x1 to x2 is defined to be the area under 
the graph of the probability density function between x1 and x2. 
 

Expectations 

Conditional expectation 
(discrete) 

Approximate expectation 
(discrete and continuous) 

Continuous variables Discrete variables 

The Gaussian (normal) distribution 
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x 
µ – 3σ µ – 1σ

µ – 2σ
µ + 1σ

µ + 2σ

µ + 3σ
µ

68.26% 

95.44% 

99.72% 

Properties of the Gaussian distribution Standard Normal Distribution 

 A random variable having a normal distribution 
 with a mean of 0 and a standard deviation of 1 is 
 said to have a standard normal probability 
 distribution. 

■  Converting to the Standard Normal Distribution  

z x
=

− µ
σ

We can think of z as a measure of the number of 
standard deviations x is from µ. 

Standard Normal Probability Distribution Gaussian Parameter Estimation 

Likelihood function 



11/15/16 

9 

Maximum (Log) Likelihood Example 

34 

Gaussian models 

Assume we have data that belongs to three classes, and assume 
a likelihood that follows a Gaussian distribution 

35 

Gaussian Naïve Bayes 

Likelihood function: 
 
 
 
 
Need to estimate mean and variance for each feature in each 
class. 
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P (Xi = x|Y = yk) =
1p

2⇡�ik

exp

✓
� (x� µik)

2

2�

2
ik

◆
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Naïve Bayes demo 

scikit-learn provides both Gaussian and multinomial/binomial 
flavors of Naïve Bayes. 

37 

Summary 

Naïve Bayes classifier: 
²  What’s the assumption 
²  Why we make it 
²  How we learn it 
Naïve Bayes for discrete data  
Gaussian naïve Bayes 
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