Naive Bayes classification

Probability theory

Random variable: a variable whose possible values are numerical
outcomes of a random phenomenon.

Examples: A person's height, the outcome of a coin toss
Distinguish between discrete and continuous variables.
The distribution of a discrete random variable:

The probabilities of each value it can take.

Notation: P(X = x;).
These numbers satisfy:

Y P(X =umz)=1

Probability theory

A joint probability distribution for two variables is a table.

p(X =z,Y =y;) % pl]

T

If the two variables are binary, how many parameters does it
have?

Let's consider now the joint probability of d variables P(Xj,....Xy).

How many parameters does it have if each variable is binary?

Probability theory

Marginal Probability

Yy Dij

mxzzgzgymxz%Y:w)

T

Joint Probability . -
Conditional Probability
I)(X =z, Y = y')
’ p(Y = y;|X = )
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The rules of probability

Marginalization p(X) =3 p(X,Y)
=

Product Rule p(X,Y) = p(Y|X)p(X)

Independence: X and Y are independent if P(Y|X) = P(Y)

This implies P(X,Y) = P(X) P(Y)

Using probability in learning

Suppose we have access to P(y | x), we would make a prediction
according to argmax, P(y | x).
This is called the Bayes-optimal classifier.

What is the error of such a classifier?

Ply=-11x) Ply=+1Ix)

¥

Using probability in learning

P(y=+1]x)
e

Some classifiers model P(Y | X) directly: discriminative learning

However, it's usually easier to model P(X | Y) from which we can
get P(Y | X) using Bayes rule:
P(X|Y)P(Y)
PY|IX)= —F~F—~—~
(Y]X) P(X)

This is called generative learning

Maximum likelihood

Fit a probabilistic model P(x | 6) to data

« Estimate ©

Given independent identically distributed (i.i.d.) data X =
(X1, Xz, s X)

« Likelihood

P(X[0) = P(1]0) P(220), ..., P(24]0)
« Log likelihood n
In P(X[0) = > In P(x;]6)
i=1

Maximum likelihood solution: parameters © that maximize
InP(X | ©)
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Example

Example: coin toss

Estimate the probability p that a coin lands "Heads" using the
result of n coin tosses, h of which resulted in heads.

The likelihood of the data:  P(X|0) = p(1 — p)"~"

Log likelihood: In P(X|0) = hlnp + (n — h)In(1 — p)

Taking a derivative and setting to O:
OlmP(X|0) h (n—nh)

Bayes' rule
From the product rule:

P(Y, X) = P(Y | X) P(X)
and:
P(Y, X) = P(X | Y) P(Y)

Therefore:
PX|Y)P(Y)

PYIX) = =5

This is known as Bayes' rule

=2 =0
p p (1-p)
h
= p=—
n
Bayes' rule

likelihood  prior
PXY)P(Y)

PYIX) = =5

posterior
posterior « likelihood x prior
P(X) can be computed as:

P(X)=> P(X|Y)P(Y)
Y

But is not important for inferring a label

Maximum a-posteriori and maximum likelihood

The maximum a posteriori (MAP) rule:

PXIY)P(Y)

= PY|X)=
YMAP argsl/nax (Y)X) argsl/nax PO

= argmax P(X|Y)P(Y)
Y

If we ignore the prior distribution or assume it is uniform we
obtain the maximum likelihood rule:
Yymr = arg;nax P(X|Y)

A classifier that has access to P(Y|X) is a Bayes optimal
classifier.
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Classification with Bayes' rule

We would like to model P(X | Y), where X is a feature vector,
and Y is its associated label.

Task: Predict whether or not a picnic spot is enjoyable

Training Data:  X=(X; X, X3 .. .. Xy Y
Sky Temp Humid Wind Water Forecst | EnjoySpt

Sunny Warm Normal Strong Warm Same Yes

Sunny Warm High Strong Warm Same Yes

nrows Rainy Cold High Strong Warm Change No

Sunny Warm High Strong Cool Change Yes

How many parameters?
Prior: P(Y) k-1if k classes
Likelihood: P(X | Y) (2¢- 1)k for binary features

Naive Bayes classifier

We would like o model P(X | Y), where X is a feature vector,
and Y is its associated label.

Simplifying assumption: conditional independence: given the
class label the features are independent, i.e.

P(X|Y) = P(a1|Y)P(2]Y),. .., P(zq]Y)

How many parameters now?

Naive Bayes classifier

We would like to model P(X | Y), where X is a feature vector,
and Y is its associated label.

Simplifying assumption: conditional independence: given the
class label the features are independent, i.e.

PXJY) = P(aa|Y)P(22]Y), ..., P(zalY)

How many parameters now? dk+k-1

Naive Bayes classifier

Naive Bayes decision rule:
d
yng = argmax P(X|Y)P(Y) = arg max H P(z;|Y)P(Y)
v Yoois

If conditional independence holds, NB is an optimal classifier!
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Training a Naive Bayes classifier

Training data: Feature matrix X (n x d) and labels y;,...y,
Maximum likelihood estimates:

p(y) _ |{Z : y;: y}|

Class prior:

Likelihood: P (z;y) = P(Axi’y) _ M Xy = @i i = yhl/n

Ply) {i:yi =y}/n

Example

Email classification
Suppose our vocabulary contains three words a, b and ¢, and we use a
multivariate Bernoulli model for our e-mails, with parameters

6° =(0.5,0.67,0.33) 6" =(0.67,0.33,0.33)

This means, for example, that the presence of b is twice as likely in spam (+),
compared with ham.

The e-mail to be classified contains words a and b but not ¢, and hence is
described by the bit vector x = (1, 1,0). We obtain likelihoods

P(x|®) =0.5-0.67-(1-0.33) = 0.222 P(x|©) =0.67-0.33-(1-0.33) =0.148

The ML classification of x is thus spam.

Example

Email classification: training data

Q
~

S

RS
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What are the parameters of the model?

Example

Email classification: training data

E-mail a? b? c¢? Class
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What are the parameters of the model?

Ply) = I{“/in:y}\
P(a;,y) _ Hi: Xy = xi,yi = y}|/n
P(y) [{i:yi =y}l/n

P(IH?J) =
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Example

Email classification: training data

E-mail a? b? ¢? Class
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What are the parameters of the model?

P(+)=05, P(-)=05 Ply) = w
P =0. P(a|-)= 0. P (s :IA’(Ii«,y) _ i Xy =i, = y)l/n
(al+)= 0.5, P(al-)= 0.75 Plaily) = =505 Lot

P(b|+) = 0.75, P(b|-)= 0.25
P(c|+) = 0.25, P(c|-)= 0.25

Comments on Nadive Bayes

Usually features are not conditionally independent, i.e.
PX|Y) # P(z1]Y)P(2s|Y), ..., P(xa]Y)

Despite that, Ndive Bayes is still one of the most widely used
classifiers. Easy and fast training.

It often performs well even when the assumption is violated.

Domingos, P., & Pazzani, M. (1997). Beyond Independence: Conditions
for the Optimality of the Simple Bayesian Classifier. Machine
Learning. 29, 103-130.

When there are few training examples

What if you never see a training example where x;=a when
y=spam?

P(x | spam) = P(a | spam) P(b | spam) P(c | spam) =0

What to do?

When there are few training examples

What if you never see a training example where x,=a when
y=spam?

P(x | spam) = P(a | spam) P(b | spam) P(c | spam) = 0
What to do?

Add “virtual” examples for which x;=a when y=spam.
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Naive Bayes for continuous variables

Need to talk about continuous distributions!

Continuous Probability Distributions

The probability of the random variable assuming a value within
some given interval from x; to x, is defined to be the area under
the graph of the probability density function between x; and x..

Normal/Gaussian

Uniform f(x)

f@®)

Expectations

Discrete variables Continuous variables

Elf) = 3 p@)f (@) Blf] = [ pa)f(@)do

=

Conditional expectation

]Ez[f“/] = Z?’(l'h/)f(l') (discrete)

1 Y Approximate expectation
E[f] ~ — Z f(zn) (discrete and continuous)

N=

The Gaussian (normal) distribution

, 1 1 N
N (z|p,0%) = Wexp{—raz(w—p)‘}

e 02
Malw, ) N(z|p,0%) >0

/m N (z|p,0%) dov =1
20 o )
E[z] :/ N (z|p, az)zdz =L

var[z] = IE[IQ] _ ]E[1]2 = o2
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Properties of the Gaussian distribution

[ YR gy g ———

Standard Normal Distribution

A random variable having a normal distribution

~| with a mean of 0 and a standard deviation of 1 is
said to have a standard normal probability
distribution.

Standard Normal Probability Distribution

Converting to the Standard Normal Distribution

We can think of zas a measure of the number of
standard deviations x is from u.

Gaussian Parameter Estimation

p(z) Likelihood function
N (zn |1, 07)

N
p(x|p.0?) = [[ NV (zaln 0?)

n=1
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Maximum (Log) Likelihood

Inp (x|p,0%) =

\r . \T
—p)? - % Ino? — % In(27)

1 N
2
HML = N E Tn oML = N E Ty — pML)

n=1 n=1

O L N W R U o N

Estimated Mean: 3.01
Estimated std_dey. 1 1Qaussmn Dlstrlbutlon

Gaussian models

Assume we have data that belongs to three classes, and assume
a likelihood that follows a Gaussian distribution
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Gaussian Naive Bayes

Likelihood function:

1 (z — pir)?
P(X; =x2lY = - _
( i o) V2To eXP( 207,

Need to estimate mean and variance for each feature in each
class.
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Naive Bayes demo

scikit-learn provides both Gaussian and multinomial/binomial
flavors of Naive Bayes.

Summary

Naive Bayes classifier:

+ What's the assumption

+ Why we make it

+ How we learn it

Naive Bayes for discrete data
Gaussian naive Bayes
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