
Support vector machines and large margin 
classification  

Chapter e-8 
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Which hyperplane is better? 

2 

e
-C

H
A
P
T
E
R

e-8. Support Vector Machines 8.1. The Optimal Hyperplane

As you can see, many lines separate the data and the Perceptron Learning
Algorithm (PLA) finds one of them. Do we care about which one PLA finds?
All separators have Ein = 0, so the VC analysis in Chapter 2 gives the same
Eout-bound for every separator. Well, the VC bound may say one thing, but
surely our intuition says that the rightmost separator is preferred .

Let’s try to pin down an argument that supports our intuition. In practice,
there are measurement errors – noise. Place identical shaded regions around
each data point, with the radius of the region being the amount of possible
measurement error. The true data point can lie anywhere within this ‘region
of uncertainty’ on account of the measurement error. A separator is ‘safe’ with
respect to the measurement error if it classifies the true data points correctly.
That is, no matter where in its region of uncertainty the true data point lies, it
is still on the correct side of the separator. The figure below shows the largest
measurement errors which are safe for each separator.

A separator that can tolerate more measurement error is safer. The right-
most separator tolerates the largest error, whereas for the leftmost separator,
even a small error in some data points could result in a misclassification. In
Chapter 4, we saw that noise (for example measurement error) is the main
cause of overfitting. Regularization helps us combat noise and avoid overfit-
ting. In our example, the rightmost separator is more robust to noise without
compromising Ein; it is better ‘regularized’. Our intuition is well justified.

We can also quantify noise tolerance from the viewpoint of the separator.
Place a cushion on each side of the separator. We call such a separator with a
cushion fat, and we say that it separates the data if no data point lies within
its cushion. Here is the largest cushion we can place around each of our three
candidate separators.
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Large margin classifiers 

Perceptron:  find hyperplane that separates the two classes 
 
Support Vector Machine (SVM):  separating hyperplane with a 
large margin 
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Intuitive concept that is backed by  
theoretical results  
(statistical learning theory) 
 
Has its origins in the work of Valdimir 
Vapnik 

Vapnik, V., and A. Lerner. Pattern recognition using generalized portrait method.  
Automation and Remote Control, 24, 774–780, 1963.  
 



margin

The history of SVMs 

Large margin linear classifiers 
  Vapnik, V., and A. Lerner. Pattern recognition using 

generalized portrait method. Automation and Remote 
Control, 24, 774–780, 1963. 

Large margin non-linear classifiers 
  B. Boser, I. Guyon, and V. Vapnik. A training algorithm 

for optimal margin classifiers.  In Fifth Annual 
Workshop on Computational Learning Theory, pages 144
—152, 1992  

SVMs for non-separable data 
  C. Cortes and V. N. Vapnik, Support vector networks. 

Machine Learning, vol. 20, no. 3, pp. 273-297, 1995. 

Since then – lots of other large margin algorithms  
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Bring back the bias 

Before:                                        Now: 
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Pulling Out the Bias

Before Now
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The geometric margin 
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The margin of a linear discriminant: 

ŵ a unit vector 
in the direction of w 



The geometric margin 

Want to find: 
 
 
Suppose that x+ and x- are equidistant from the decision 
boundary: 
 
 
 
Subtracting the two equations: 
 
 
Divide by the norm of w: 
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f(x�) = w

|
x� + b = a

f(x ) = w

|
x + b = �a

w
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Canonical separating hyperplane 
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Separating The Data

wtxn + b > 0

wtxn + b < 0

Hyperplane h = (b,w)

h separates the data means:

yn(w
txn + b) > 0

By rescaling the weights and bias,

min
n=1,...,N

yn(w
txn + b) = 1

(renormalize the weights so that the signalwtx+b is meaningful)

c© AML Creator: Malik Magdon-Ismail Maximizing the Margin: 8 /19 Distance to the hyperplane −→



The geometric margin 

To get a well-defined value we will use the canonical 
representation of a hyperplane. 
 
Under this assumption we have that the margin equals 
 
 
 
Maximizing the margin is therefore equivalent to minimizing  
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mD(f) =
1

||w||

||w||2



Motivation 

Theoretical motivation:  The VC dimension, which measures the 
complexity of a hypothesis, increases with decreasing margin. 
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Linear SVMs 

Objective:  maximize the margin while correctly classifying all 
examples correctly 
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minimize

w,b

1

2

||w||2

subject to: yi(w
|
xi + b) � 1 i = 1, . . . , n .



Digression: constrained optimization 

Before considering optimization problems with inequality 
constraints we will consider ones with equality constraints: 
 
 
 
 
And to make things even simpler, start with the case of a single 
constraint g(x) 
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minimize f(x)

subject to: gi(x) = 0

minimize f(x)

subject to: g(x) = 0



Digression: constrained optimization 
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Digression: constrained optimization 
Claim:  A minimizer x* of the constrained optimization problem 
must have the property that               is orthogonal to the 
constraint surface. 
 
Therefore there exists               such that 
 
 
   is known as a Lagrange multiplier 
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rf(x⇤)

rf(x⇤) + �rg(x⇤) = 0

� 6= 0

�

Images from http://en.wikipedia.org/wiki/Lagrange_multiplier 



Lagrange multipliers 

When there are multiple equality constraints: 
 
 
The Lagrangian function: 
 
 
The above condition is obtained by setting 
 
 
And the condition 
leads to the constraint equations. 
 
Conclusion:  the solution is a stationary point of the Lagrangian  
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rf(x⇤) +
X

i

�irgi(x
⇤) = 0

⇤(x,�) = f(x) +
X

i

�igi(x) = f(x) + �|g(x)

r
x

⇤(x,�) = 0 r
x

Denote differentiation 
with respect to x 

r�⇤(x,�) = 0



Inequality constraints 

 
 
Two possible scenarios: 

 g(x) < 0 – the constraint is inactive 
 g(x) = 0 – the constraint is active 

If the constraint is inactive the stationarity condition is 
This corresponds to a stationary point of the Lagrangian with 
When the constraint is active, we have 
Both cases can be summarized by the condition 

 
The sign of     is important:  f(x) will be minimized only if its 
gradient is oriented away from the region g(x) < 0, i.e.   
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minimize f(x)

subject to: g(x)  0

rf(x) = 0
� = 0

� 6= 0

�g(x) = 0

�

rf(x⇤) = ��rg(x⇤) where � > 0



Constrained optimization with inequality 
constraints 

Conclusion: 
Our constrained optimization problem of minimizing f(x) such 
that g(x) ≤ 0 is solved by         that satisfy: 
 
 
 
 
 
 
 
 
These are known as the KKT conditions 
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r⇤(x,�) = 0

g(x)  0

� � 0

�g(x) = 0



Constrained optimization with inequality 
constraints 

With multiple constraints: 
Our constrained optimization problem of minimizing f(x) such 
that gi(x) ≤ 0 is solved by         that satisfy: 
 
 
 
 
 
 
 
 
These are known as the KKT conditions 
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Lagrangian duality 

Claim:  The problem of minimizing f(x) s.t. gi(x) ≤ 0 can be 
expressed as:  
 
 
We can see this by performing the inner maximization: 
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min

x

max

�
⇤(x,�) such that � � 0

max

�
f(x) + �|g(x) =

(
f(x) g(x)  0

1 g(x) > 0

Solution is a saddle point 



Lagrangian duality 

Claim:  The problem of minimizing f(x) s.t. gi(x) ≤ 0 can be 
expressed as: 
 
 
Instead of using the primal formulation let’s consider: 
 
 
 
This is called the dual 
Under certain conditions (convexity) the two problems have the 
same solution 
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x

⇤(x,�) such that � � 0



Back to SVMs 

Lagrangian for the SVM problem: 
 
 
 
Necessary conditions for the saddle point: 
 
 
 
 
 
 
 
 
How do we get b? 
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original constraints: 



Support Vectors 

Let’s use the KKT conditions: 
 
 
Implication: 
Pick an i such that  
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↵i [1� yi (w
|
xi + b)] = 0

↵i > 0

yi (w
|
xi + b) = 1

) b = yi �w

|
xi



Support Vectors 

Let’s use the KKT conditions: 
 
 
Implication: 
Pick an i such that 
 
 
 
 
The correspond xi are called 
support vectors  
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↵i [1� yi (w
|
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Support Vectors 

Claim:  The fraction of support vectors is an upper bound on the 
estimated Leave-One-Out error (see page 17 in chapter 8) 
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classification error), and so

Ecv(SVM) =
1

N

N
∑

n=1

en ≤
# support vectors

N
. (8.8)

Exercise 8.8

(a) Evaluate the bound in (8.8) for the data in Figure 8.5.

(b) If one of the four support vectors in a gray box are removed, does the
classifier change?

(c) Use your answer in (b) to improve your bound in (a).

The support vectors in gray boxes are non-essential and the support vector
in the black box is essential. One can improve the bound in (8.8) to use only
essential support vectors. The number of support vectors is unbounded, but
the number of essential support vectors is at most d+1 (usually much less).

In the interest of full disclosure, and out of fairness to the PLA, we should
note that a bound on Ecv can be obtained for PLA as well, namely

Ecv(PLA) ≤ R2

Nρ2
,

where ρ is the margin of the thickest hyperplane that separates the data, and R
is an upper bound on ‖xn‖ (see Problem 8.11). The table below provides a
summary of what we know based on our discussion so far.

Algorithm For Selecting Separating Hyperplane

General PLA SVM (Optimal Hyperplane)

dvc = d+ 1 dvc(ρ) ≤ min
(⌈

R2

ρ2

⌉

, d
)

+ 1

Ecv ≤
R2

Nρ2
Ecv ≤

# support vectors

N

In general, all you can conclude is the VC bound based on a VC dimension of
d+ 1. In high dimensions, this bound can be a very loose. For PLA or SVM,
we have additional bounds that do not explicitly depend on the dimension d.
If the margin is large, or if the number of support vectors is small (even in
infinite dimensions), we are still in good shape.

8.1.3 Non-Separable Data

Our entire discussion so far assumed that the data is linearly separable and
focused on separating the data with maximum safety cushion. What if the
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The dual 

 
 
 
The dual: 
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The dual 
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The dual 

 
 
 
 
 
 
Comments:  quadratic programming problem (no local minima!) 
Usually a sparse solution (many alphas equal to 0) 
 
Compare to the primal: 
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The non-seaprable case 

In order to allow for misclassifications we replace the 
constraints  
 
 
with 
 
             are called slack variables 
 
Need to incorporate the slack variables in the optimization 
problem because we want to discourage overuse of the slacks. 
 
              is a bound on the number of misclassified examples 
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SVMs for non-separable data 

Our optimization problem for the non-separable case: 
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1
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SVMs for non-separable data 

Our optimization problem for the non-separable case: 
 
 
 
 
Let’s form the Lagrangian: 
 
 
Saddle point equations: 
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The dual 

Plugging into the Lagrangian we get the following dual formulation: 
 
 
 
 
 
 
 
Beta appears only in the constraints.  Replace it with the 
constraint 
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The dual 

The final form of the dual becomes 
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SVM:  dual and primal 

Primal: 
 
 
 
 
Dual: 
 
 
 
 
Dual:  simpler constraints; will allow us to use SVMs as non-
linear classifiers 
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SVM solvers 

Primal: 
  Limited to linear SVMs 
  Fast 
  Software:  LibLinear 

 
Dual: 
  Interior point methods (generic solvers for quadratic programming 

problems) 
  SVM-specific solvers:  SMO (optimize two alphas at a time) 
  Software:  LibSVM (a flavor of SMO) 
  Approximate solvers (e.g. LASVM) 
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SMO 

Sequential Minimal Optimization (SMO):  A solver for the SVM 
dual problem.  
 
When you choose two variables, the resulting problem can be 
solved analytically! 
 
Issues and tricks: 
  Which two variables to choose? 
  Shrinking:  temporarily remove variables that are less likely to be 

chosen (at upper/lower bounds).  Need occasional “unshrinking”. 
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Platt, John (1998), Sequential Minimal Optimization: A Fast Algorithm for Training Support  
Vector Machines 


