Support vector machines and large margin
classification

Chapter e-8




Which hyperplane is better?
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Large margin classifiers

Perceptron: find hyperplane that separates the two classes

Support Vector Machine (SVM): separating hyperplane with a
large margin 10 .

Intuitive concept that is backed by
theoretical results °

(statistical learning theory)
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Has its origins in the work of Valdimir
Vapnik
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Vapnik, V., and A. Lerner. Pattern recognition using generalized portrait method.
Automation and Remote Control, 24, 774-780, 1963.



The history of SVMs

Large margin linear classifiers

= Vapnik, V., and A. Lerner. Pattern recognition using
generalized portrait method. Automation and Remote
Control, 24, 774-780, 1963.

Large margin non-linear classifiers

. B. Boser, I. Guyon, and V. Vapnik. A training algorithm = -
for optimal margin classifiers. In Fifth Annual —

Workshop on Computational Learning Theory, pages 144 | = °
—152, 1992 | f

SVMs for non-separable data B/

« C. Cortes and V. N. Vapnik, Support vector networks.
Machine Learning, vol. 20, no. 3, pp. 273-297, 1995.

Since then - lots of other large margin algorithms



Bring back the bias
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The geometric margin

The margin of a linear discriminant:

1
§WT(X@ — X@)

a unit vector
in The direction of w



The geometric margin

Want to find:

1
§WT(X@ — Xg)

Suppose that x, and x_ are equidistant from the decision
boundary:

wWixe +b=a
wWixe +b=—a
Subtracting the two equations:
wT(xg — Xg) = 2a

Divide by the norm of w:
2a

[wl]

W (Xg —Xg) =



Canonical separating hyperplane

Hyperplane h = (b, w)

h separates the data means:

w'x, +b>0 yn(WTXn 4 b) > 0

By rescaling the weights and bias,

min Yn(W'x, +b) =1

w'x, +b<0



The geometric margin

To get a well-defined value we will use the canonical
representation of a hyperplane.

1

Under this assumption we have that the margin equals ’ ’ ‘ ’
W

Maximizing the margin is therefore equivalent to minimizing ‘ ‘W‘ ’2



Motivation

Theoretical motivation: The VC dimension, which measures the
complexity of a hypothesis, increases with decreasing margin.
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Linear SVMs

Objective: maximize the margin while correctly classifying all
examples correctly

1
minimize

w,b 5
subject to: y;(wTx; +b)>1 i=1,...,n.

[wll*
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Digression: constrained optimization

Before considering optimization problems with inequality
constraints we will consider ones with equality constraints:

minimize f(x)

subject to: g;(x) =0

And to make things even simpler, start with the case of a single
constraint g(x)

minimize f(x)

subject to: ¢g(x) =0
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Digression: constrained optimization
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Images from http://en.wikipedia.org/wiki/Lagrange_multiplier
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Digression: constrained optimization

Claim: A minimizer x™ of the constrained optimization problem
must have the property that V f(x*) is orthogonal to the
constraint surface.

Therefore there exists X\ # 0 such that

Vf(x") +AVg(x") =0
A is known as a Lagrange multiplier
f5.3) A

Images from h‘r‘rp://en.wikipedia.org/wiki/lf%gr'anga_mul’riplier " X 14



Lagrange multipliers

When there are multiple equality constraints:
V) + Y AVgi(x*) =0
The Lagrangian function: :
A(x,A) = f(x) + Z Aigi(x) = f(x) + ATg(x)
The above condition is ob’raineé by setting
VA (X, )\) — 0 ¥, Denote differentiation

with respect to x
And the condition VA (x,A) =0
leads to the constraint equations.

Conclusion: the solution is a stationary point of the Lagrangian
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Inequality constraints

minimize f(x)

subject to: g(x) <0

Two possible scenarios:

g(x) < O - the constraint is inactive

g(x) = O - the constraint is active
If the constraint is inactive the stationarity condition is V f(x) = 0
This corresponds to a stationary point of the Lagrangian with A = 0
When the constraint is active, we have )\ #£ (
Both cases can be summarized by the condition

Ag(x) =0

The sign of \ is important: f(x) will be minimized only if its
gradient is oriented away from the region g(x) < O, i.e.

Vf(x*)=—-AVg(x™) where A > 0
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Constrained optimization with inequality
constraints

Conclusion:

Our constrained optimization problem of minimizing f(x) such
that g(x) < O is solved by x, A that satisfy:

VA(x,A) =0
g9(x) <0

A >0

Ag(x) =0

These are known as the KKT conditions
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Constrained optimization with inequality
constraints

With multiple constraints:

Our constrained optimization problem of minimizing f(x) such
that gi(x) < O is solved by x, A that satisfy:

VAx,A) =0
9i(x) <0
A>0
Aigi(x) =0

These are known as the KKT conditions
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Lagrangian duality

Claim: The problem of minimizing f(x) s.t. g,(x) < O can be
expressed as:

min m}z\lx A(x,A) such that A > 0

We can see this by performing the inner maximization:

f(x) g(x) <0

A

L(x, )

N,
* s
A
¥

Solution is a saddle point
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Lagrangian duality

Claim: The problem of minimizing f(x) s.t. g,(x) < O can be
expressed as:

min m}z\lx A(x,A) such that A > 0

Instead of using the primal formulation let's consider:

max min A(x, A) such that A > 0

This is called the dual

Under certain conditions (convexity) the two problems have the
same solution
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Back to SVMs

Lagrangian for the SVM problem:
n

1
A(w,b,a) = S[[wl* + ) ai [1 — i (WTx; + )]

1=1

Necessary conditions for the saddle point:

O\ &
— =W+ Zai(—inz‘) =0
i=1

ow
n
= W = Z Y X

1=1
n

O\
— = a;y; = 0

How do we get b?

original constraints:
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Support Vectors

Let's use the KKT conditions:
87 [1 — Y; (WTXZ' -+ b)] =0

Implication:
Pick an i such that a; > 0

Y, (WTx; +b) =1

= b=1vy; — wWTx;
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Support Vectors

Let's use the KKT conditions:
87 [1 — Y, (WTXZ' + b)] =0

Implication:
Pick an i such that «; > 0

y; (Wix; +b) =1
= b=y, —wW'x;

The correspond x; are called
support vectors
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Support Vectors

Claim: The fraction of support vectors is an upper bound on the
estimated Leave-One-Out error (see page 17 in chapter 8)

l # support vectors
Eey(SVM) Z .

1
"N N
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The dual

1 n
A(w,b,a) = §HWH2 + Zai 1 —y; (WTx; —|— b)]

1=1
The dual: W= Z VilfiRki

n T n
i=1 =1
+ Z a; — b Z oY,
i=1 i=1
7" 7"
— Z QY (Z OéjijJT-Xz')
i=1 j=1



The dual

1 n T n

=5 (Z &iyixi> Z QjYjX;j
i=1 j=1
- Z a; —b Z Qi Yi
i=1 i=1

— Z QY5 (Z Ozjij;Xi)

= Z o — = > >1aza3yzij X
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The dual

n n n

1
maximize E = 5 54 SJ QGO Y Y X X

«

subject to: a; > 0, Zoziyi =0
i=1

Comments: quadratic programming problem (no local minimal)
Usually a sparse solution (many alphas equal to O)

Compare to the primal:

o] 9
minimize—||w||
w,b 2

subject to: y;(WTx; +b)>1 1=1,...,
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The non-seaprable case

In order to allow for misclassifications we replace the
constraints

Y (Wix; +b) > 1
with Y (WTx; +b) > 1-¢;
&; > 0 are called slack variables

Need to incorporate the slack variables in the optimization

problem because we want to discourage overuse of the slacks.

n

Z & is a bound on the number of misclassified examples
i=1
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SVMs for non-separable data

Our optimization problem for the non-separable case:

NS P
mmfnlzeiHWH —I—CZ&

1
w,b :
1=1

subject to: y;(WTx; +b) >1—-¢&;, £ >0, 1=1,...,n.

C=100

1.0




SVMs for non-separable data

Our optimization pr'oblem for the non-separable case:

2
CE i
mlmngnze |]w|| + 2 1§
subject to: y;(WTx; +b) >1—-&, & >0, i=1,...,n.

Let's form the Lagr'angian'
Aw,b,a, &) = —HW||2—I—C'z:&—l—Z:ozZ — & —y; (WTx; + b)] —'—ZB"&

Saddle point e ua’ruons
P ] —ZW—Z&iinfz;:O

1=1
= zn: yio; = 0
1=1

oA
afz C_az 62 =0
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The dual

Plugging into the Lagrangian we get the following dual formulation:

n n

mn
1
maximize E =3 E g QGO Y Y X X
(@4

i=1 i=1 j=1

n
subject to: a; > 0, Zaiyi >0
i=1
;i =20, C—a;—5;=0
Beta appears only in the constraints. Replace it with the
constraint 0<a; <C
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The dual

The final form of the dual becomes

’L].]].

subject to: 0 < o; < C, Z a;y; =0
i=1
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SVM: dual and primal

Primal: .. 1 5 =
- C )
minimizez |[w||” + ;5
subject to: y;(wTx; +b) >1-¢&;, >0, i=1,...
mn 1 mn mn
dual: max(ilmize Z =g Z Z QGO Y YK X
i=1 i=1 j=1

mn
subject to: 0 < a; < C, Zoziyi =2
i=1

Dual: simpler constraints; will allow us to use SVMs as non-
linear classifiers
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SVM solvers

Primal:

- Limited to linear SVMs
- Fast

. Software: LibLinear

Dual:

« Interior point methods (generic solvers for quadratic programming
problems)

« SVM-specific solvers: SMO (optimize two alphas at a time)
- Software: LibSVM (a flavor of SMO)
. Approximate solvers (e.g. LASVM)
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SMO

Sequential Minimal Optimization (SMO): A solver for the SVM
dual problem.

When you choose two variables, the resulting problem can be
solved analytically!

Issues and tricks:
= Which two variables to choose?

« Shrinking: temporarily remove variables that are less likely to be
chosen (at upper/lower bounds). Need occasional "unshrinking”.

Platt, John (1998), Sequential Minimal Optimization: A Fast Algorithm for Training Support
Vector Machines
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