
SVMs: nonlinearity through kernels 

Chapter 3.4, e-8 
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Non-separable data 

Consider the following two datasets: 
 
 
 
 
 
 
 
 
 
 
Both are not linearly separable.  But there is a difference! 
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e-8. Support Vector Machines 8.1. The Optimal Hyperplane

(a) Few noisy data. (b) Nonlinearly separable.

Figure 8.6: Non-separable data (reproduction of Figure 3.1).

data is not linearly separable? Figure 8.6 (reproduced from Chapter 3) il-
lustrates the two types of non-separability. In Figure 8.6(a), two noisy data
points render the data non-separable. In Figure 8.6(b), the target function is
inherently nonlinear.

For the learning problem in Figure 8.6(a), we prefer the linear separator,
and need to tolerate the few noisy data points. In Chapter 3, we modified the
PLA into the pocket algorithm to handle this situation. Similarly, for SVMs,
we will modify the hard-margin SVM to the soft-margin SVM in Section 8.4.
Unlike the hard margin SVM, the soft-margin SVM allows data points to
violate the cushion, or even be misclassified.

To address the other situation in Figure 8.6(b), we introduced the nonlinear
transform in Chapter 3. There is nothing to stop us from using the nonlinear
transform with the optimal hyperplane, which we will do here.

To render the data separable, we would typically transform into a higher
dimension. Consider a transform Φ : Rd → Rd̃. The transformed data are

zn = Φ(xn).

After transforming the data, we solve the hard-margin SVM problem in the
Z space, which is just (8.4) written with zn instead of xn:

minimize:
b̃,w̃

1

2
w̃tw̃ (8.9)

subject to: yn
(

w̃tzn + b̃
)

≥ 1 (n = 1, · · · , N),

where w̃ is now in Rd̃ instead of Rd (recall that we use tilde for objects in
Z space). The optimization problem in (8.9) is a QP-problem with d̃ + 1
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Non-separable data 

Consider the following two datasets: 
 
 
 
 
 
 
 
 
 
        
           Linear with outliers                    Nonlinear 
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Transform your features! 

Map your data into “Z-space” using a nonlinear function 
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Mechanics of the Feature Transform I

Transform the data to a Z-space in which the data is separable.
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Classification in Z-space 

In Z-space the data can be linearly separated: 
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Mechanics of the Feature Transform II

Separate the data in the Z-space with w̃:

g̃(z) = sign(w̃tz)

−→
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Classification in Z-space 

a 
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Mechanics of the Feature Transform III

To classify a new x, first transform x to Φ(x) ∈ Z-space and classify there with g̃.

g(x) = g̃(Φ(x))

= sign(w̃tΦ(x))
g̃(z) = sign(w̃tz)

←−
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Classification in Z-space 

 
 
 
 
 
 
 
 
 
 
 
What can we say about the dimensionality of the Z-space as a 
function of the dimensionality of the data? 

7 

Must Choose Φ BEFORE Your Look at the Data

After constructing features carefully, before seeing the data . . .

. . . if you think linear is not enough, try the 2nd order polynomial transform.
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The polynomial Z-space 

We can choose higher order polynomials: 
 
 
 
 
 
 
 
 
What are the potential effects of increasing the order of the 
polynomial? 
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The General Polynomial Transform Φk

We can get even fancier: degree-k polynomial transform:
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– Dimensionality of the feature space increases rapidly (dvc)!

– Similar transforms for d-dimensional original space.

– Approximation-generalization tradeoff
Higher degree gives lower (even zero) Ein but worse generalization.
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The polynomial Z-space 

         Linear model                                fourth order polynomial 
 
 
 
 
 
 
 
 
 
Feature-space dimensionality increases rapidly and with it the 
complexity of the model: danger of overfitting 
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Be Careful with Feature Transforms

High order polynomial transform leads to “nonsense”.
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A few potential issues… 

u  Danger of overfitting 
u  Better chance of obtaining linear separability 
u  Computationally expensive (memory and time) 

Kernels:  avoid the computational expense by an implicit mapping  
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Achieving non-linear discriminant functions 

Consider two dimensional data and the mapping 
 
 
Let’s plug that into the discriminant function: 
 
 
The resulting decision boundary is a conic section. 
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How to avoid the overhead of explicit mapping 

Suppose the weight vector can be expressed as: 
 
 
The discriminant function is then: 
 
 
And using our nonlinear mapping: 
 
 
 
Turns out we can often compute the dot product without 
explicitly mapping the data into a high dimensional feature 
space! 
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Example 

Let’s go back to the example 
 
 
and compute the dot product 
 
 
 
 
 
Do we need to perform the mapping explicitly? 
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Example 

Let’s go back to the example 
 
 
and compute the dot product 
 
 
 
 
 
Do we need to perform the mapping explicitly? 
 
NO!  Squaring the dot product in the original space has the same 
effect as computing the dot product in feature space. 
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Kernels 

Definition:  A function k(x, z) that can be expressed as a dot 
product in some feature space is called a kernel. 
 
In other words, k(x, z) is a kernel if there exists 
such that  
 
 
Why is this interesting? 
 
If the algorithm can be expressed in terms of dot products, we 
can work in the feature space without performing the mapping 
explicitly! 
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k(x, z) = �(x)|�(z)

� : X 7! F



The dual SVM problem 

The dual SVM formulation depends on the data through dot 
products, and so can be expressed using kernels.  Replace 
 
 
 
 
 
with: 
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Standard kernel functions 

The linear kernel 
 
 
Homogeneous polynomial kernel 
 
 
Polynomial kernel 
 
 
Gaussian kernel 
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Standard kernel functions 

The linear kernel 
 
 
Homogeneous polynomial kernel 
 
 
Polynomial kernel 
 
 
Gaussian kernel 
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Feature space: 

Original features 

All monomials of 
degree d 

All monomials of 
degree less than d 

Infinite dimensional 



Demo 

Using polynomial kernel: 
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Demo 
Using the Gaussian kernel: 
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k(x, z) = exp(��||x� z||2)



Input:  labeled data D in homogeneous coordinates 
Output:  weight vector w 
 
w = 0 
converged = false 
while not converged : 
    converged = true 
    for i in 1,…,|D| : 
        if xi is misclassified update w and set 
            converged=false 
 

“Kernelizing” the perceptron algorithm 

Recall the primal version of the perceptron algorithm: 
 
 
 
 
 
 
 
 
 
 
 
What do you need to change to express it in the dual? 
(I.e. express the algorithm in terms of the alpha coefficients) 
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Input:  labeled data D in homogeneous coordinates 
Output:  weight vector α 
 
α = 0 
converged = false 
while not converged : 
    converged = true 
    for i in 1,…,|D| : 
        if xi is misclassified update α and set 
            converged=false 
 

“Kernelizing” the perceptron algorithm 
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Input:  labeled data D in homogeneous coordinates 
Output:  weight vector α 
 
α = 0 
converged = false 
while not converged : 
    converged = true 
    for i in 1,…,|D| : 
        if xi is misclassified update α and set 
            converged=false 
 

“Kernelizing” the perceptron algorithm 
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Linear regression revisited 

The sum-squared cost function: 
 
 
 
 
The optimal solution satisfies: 
 
 
If we express w as: 
 
 
 
We get: 
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Kernel linear regression 

We now get that α satisfies: 
 
 
Compare with: 
 
 
 
Which is harder to find?  What have we gained? 
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The kernel matrix 

                The covariance matrix (d x d) 
 
                Matrix of dot products associated with a dataset (n x n). 
 
Can replace it with a matrix K such that: 
 
 
 
This is the kernel matrix associated with a dataset 
a.k.a the Gram matrix 
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How does that matrix look like? 

Kernel matrix for gene  
expression data in yeast: 
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Properties of the kernel matrix 

The kernel matrix: 
 
 
q  Symmetric (and therefore has real eigenvalues) 
q  Diagonal elements are positive 
q  Every kernel matrix is positive semi-definite, i.e. 

q  Corollary:  the eigenvalues of a kernel matrix are positive  
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Standard kernel functions 

The linear kernel 
 
 
Homogeneous polynomial kernel 
 
 
Polynomial kernel 
 
 
Gaussian kernel (aka RBF kernel) 
 
 
 
How do we even know that the Gaussian is a valid kernel? 
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Feature space: 

Original features 

All monomials of 
degree d 

All monomials of 
degree less than d 

Infinite dimensional 



Some tricks for constructing kernels 

Let K(x,z) be a kernel function 
 
If a > 0 then aK(x,z) is a kernel 
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Some tricks for constructing kernels 

Sums of kernels are kernels: 
 
Let K1 and K2 be kernel functions then K1 + K2 is a kernel 
 
What is the feature map that shows this? 
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Some tricks for constructing kernels 

Sums of kernels are kernels: 
 
Let K1 and K2 be kernel functions then K1 + K2 is a kernel 
 
Feature map:  concatenation of the underlying feature maps 
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Some tricks for constructing kernels 

Products of kernels are kernels: 
 
Let K1 and K2 be kernel functions then K1 K2 is a kernel 
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Some tricks for constructing kernels 

Products of kernels are kernels: 
 
Let K1 and K2 be kernel functions then K1 K2 is a kernel 
 
Construct a feature map that contains all products of pairs of 
features 
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The cosine kernel 

If K(x,z) is a kernel then 
 
 
 
is a kernel 
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The cosine kernel 

If K(x,z) is a kernel then 
 
 
 
is a kernel 
 
This kernel is equivalent to normalizing each example to have 
unit norm in the feature space associated with the kernel. 
This kernel is the cosine in the feature space associated with 
the kernel K: 

36 

K

0(x, z) =
K(x, z)p

K(x, x)K(z, z)

cos(�(x),�(z)) =

�(x)

|
�(z)

||�(x)|| ||�(z)|| =
�(x)

|
�(z)p

�(x)

|
�(x)�(z)

|
�(z)



Infinite sums of kernels 

Theorem:  A function 
with a series expansion 
 
 
 
is a kernel iff                 for all n. 
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Infinite sums of kernels 

Theorem:  A function 
with a series expansion 
 
 
 
is a kernel iff                 for all n. 
 
Corollary:                                                 is a kernel     

38 

K(x, z) = K(x|
z)

K(t) =
1X

n=0

ant
n

an � 0

K(x, z) = exp (2�x|
z)



Infinite sums of kernels 

Theorem:  A function 
with a series expansion 
 
 
 
is a kernel iff                 for all n. 
 
Corollary:                                                 is a kernel 
 
Corollary:                                                       is a kernel 
 
 
i.e. the Gaussian kernel is the cosine kernel of the exponential 
kernel       
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