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Linear models and the perceptron 
algorithm 

Chapters 1, 3 
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Preliminaries 

Definition:  The Euclidean dot product between two vectors is 
the expression  
 
 
The dot product is also referred to as inner product or scalar 
product. 
It is sometimes denoted as  
(hence the name dot product). 
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Preliminaries 

Definition:  The Euclidean dot product between two vectors is 
the expression  
 
 
The dot product is also referred to as inner product or scalar 
product. 
 
Geometric interpretation.  The dot product between two unit 
vectors1 is the cosine of the angle between them.   
The dot product between a vector and a unit vector is the 
length of its projection in that direction. 
And in general: 
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w

|
x = ||w|| · ||x||cos(✓)

The norm of a vector: 

||x||2 = x

|
x

Labeled data 

A labeled dataset: 
 
 
 
Where                        are d-dimensional vectors 
 
The labels: 
 
are discrete for classification 
problems (e.g. +1, -1) for binary 
classification 
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D = {(xi, yi)}ni=1

xi 2 Rd

Labeled data 

A labeled dataset: 
 
 
 
Where                        are d-dimensional vectors 
 
The labels: 
 
are continuous values for a  
regression problem 
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D = {(xi, yi)}ni=1

xi 2 Rd

Linear models 

Linear models for classification 
(linear decision boundaries) 
 
 
 
 
 
Linear models for regression 
(estimating a linear function) 
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Linear models for classification 
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Discriminant/scoring function: 

weight vector bias 

f(x) = w

|
x+ b

Linear models for classification 

 
 
 
 
 
 

8 

w

wTx + b < 0

wTx + b > 0

Decision boundary: 
 
   all x such that 
 
For linear models the the decision boundary is a line in 2-d, a plane  
in 3-d and a hyperplane in higher dimensions 

f(x) = w

|
x+ b = 0

Linear models for classification 
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Using the discriminant to 
make a prediction: 

the sign function equals 1 when its argument is positive and -1 otherwise 

ŷ = sign(w|
x+ b)

Linear models for classification 
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Decision boundary: 
    all x such that 
 
 
What can you say about the decision boundary when b = 0? 

f(x) = w

|
x+ b = 0

Linear models for regression 

When using a linear model for regression the scoring function is 
the prediction: 
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ŷ = w

|
x+ bLeast Squares Linear Regression

x

y

x1 x2

y

y = f(x) + ε ←− noisy target P (y|x)

in-sample error Ein(h) =
1
N

N∑

n=1
(h(xn)− yn)2

out-of-sample error Eout(h) = Ex[(h(x)− y)2]












h(x) = wtx
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Why linear? 

q  It’s a good baseline:  always start simple 
q  Linear models are stable 
q  Linear models are less likely to overfit the training 

data because they have relatively less parameters.  
Can sometimes underfit.  Often all you need when 
the data is high dimensional. 

q  Lots of scalable algorithms 

12 
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From linear to non-linear 
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There is a neat mathematical trick that will enable us to use linear 
classifiers to create non-linear decision boundaries! 

From linear to non-linear 
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Original data:  not linearly separable Transformed data:  (x’,y’) = (x2, y2) 

Linearly separable data 

Linearly separable data:  there exists a linear 
decision boundary separating the classes. 
 
Example: 
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The bias and homogeneous coordinates 

In some cases we will use algorithms that learn a discriminant 
function without a bias term. This does not reduce the 
expressivity of the model because we can obtain a bias using the 
following trick: 
 
Add another dimension x0 to each input and set it to 1. 
Learn a weight vector of dimension d+1 in this extended space, 
and interpret w0 as the bias term.  With the notation  
 
 
 
 
We have that: 
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w̃ · x̃ = w0 +w · x

w̃ = (w0, w1, . . . , wd)w = (w1, . . . , wd)

x̃ = (1, x1, . . . , xd)

See page 7 in the book 

Finding a good hyperplane 

We would like a classifier that fits the data, i.e. we would like to 
find a vector w that minimizes 
 
 
 
 
 
 
 
 
This is a difficult problem because of the discrete nature of 
the indicator and sign function (known to be NP-hard). 
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=
1

n

nX

i=1

[sign(w|
xi) 6= yi]

Ein(h) =
1

n

nX

i=1

[h(xi) 6= f(xi)]

How to Learn a Final Hypothesis g from H

We want to select g ∈ H so that g ≈ f .

We certainly want g ≈ f on the data set D. Ideally,

g(xn) = yn.

How do we find such a g in the infinite hypothesis set H, if it exists?

Idea! Start with some weight vector and try to improve it.

Age

In
co

m
e
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The perceptron algorithm (Rosenblatt, 1957) 

Idea:  iterate over the training examples, and update the weight 
vector w in a way that would make xi is more likely to be 
correctly classified. 
Let’s assume that xi is misclassified, and is a positive example 
i.e.  
 
We would like to update w to w’ such that 
 
 
This can be achieved by choosing 
 
 

  is the learning rate        

18 

w

0 · xi > w · xi

w

0 = w + ⌘xi

0 < ⌘  1

w · xi < 0 Note:  we’re learning a classifier 
without a bias term  

Section 1.1 in the book 
Rosenblatt, Frank (1957), The Perceptron--a perceiving and recognizing automaton. 
Report 85-460-1, Cornell Aeronautical Laboratory. 
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The perceptron algorithm 

If xi is a negative example, the update needs to be opposite. 
Overall, we can summarize the two cases as: 
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w

0 = w + ⌘yixi

Input:  labeled data D in homogeneous coordinates 
Output:  weight vector w 
 
w = 0 
converged = false 
while not converged : 
    converged = true 
    for i in 1,…,|D| : 
        if xi is misclassified update w and set 
            converged=false 
return w  

The perceptron algorithm 

Since the algorithm is not guaranteed to converge you need to 
set a limit on the number of iterations: 
 
 
 
 
 
 

20 

Input:  labeled data D in homogeneous coordinates 
Output:  weight vector w 
 
w = 0 
converged = false 
while (not converged or number of iterations < T) : 
    converged = true 
    for i in 1,…,|D| : 
        if xi is misclassified:  

  update w and set converged=false 
return w  

The perceptron algorithm 

The algorithm makes sense, but let’s try to derive it in a more 
principled way. 
The algorithm is trying to find a vector w that separates 
positive from negative examples. 
We can express that as: 
 
 
 
For a given weight vector w the degree to which this does not 
hold can be expressed as: 
 
 
 
We want to find w that minimizes or maximizes this criterion? 
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yiw
|
xi > 0, i = 1, . . . , n

E(w) = �
X

i: xi is misclassified

yiw
|
xi

Digression:  gradient descent 

22 Images from http://en.wikipedia.org/wiki/Gradient_descent 

Given a function E(w), the gradient is the direction of  
steepest ascent 
Therefore to minimize E(w), take a step in the direction of the  
negative of the gradient 

Notice that the gradient is perpendicular 
to contours of equal E(w) 

Gradient descent 

We can now express gradient descent as: 
 
 
 
 
where 
 
 
And w(t) is the weight vector at iteration t 
 
The constant η is called the step size (learning rate when used 
in the context of machine learning). 
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w(t+ 1) = w(t)� ⌘rE(w)
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The perceptron algorithm 

Let’s apply gradient descent to the perceptron criterion: 
 
 
 
 
 
 
 
 
 
 
 
Which is exactly the perceptron algorithm! 
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w(t+ 1) = w(t)� ⌘
@E(w)
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= w(t) + ⌘
X

i: xi is misclassified

yixi
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The perceptron algorithm 

The algorithm is guaranteed to converge if the data is linearly 
separable, and does not converge otherwise. 
 
Issues with the algorithm: 
 
q  The algorithm chooses an arbitrary hyperplane that 

separates the two classes.  It may not be the best one from 
the learning perspective. 

q  Does not converge if the data is not separable (can halt after 
a fixed number of iterations). 

There are variants of the algorithm that address these issues 
(to some extent). 
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The pocket algorithm 
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Input:  labeled data D in homogeneous coordinates 
Output:  a weight vector w 
 
w = 0, wpocket = 0  
converged = false 
while (not converged or number of iterations < T) : 
    converged = true 
    for i in 1,…,|D| : 
        if xi is misclassified:  

  update w and set converged=false 
    if w leads to better Ein than wpocket : 
   wpocket = w     

return wpocket  

Gallant, S. I. (1990). Perceptron-based learning algorithms. IEEE Transactions on  
Neural Networks, vol. 1, no. 2, pp. 179–191. 
 

Image classification 
Features:  important properties of the input you think are 
relevant for classification 
 
 
 
 
 
 
 
 
 
 
 
In this case we consider the level of symmetry (image – its 
flipped version) and overall intensity (fraction of pixels that are 
dark) 
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Intensity and Symmetry Features

feature: an important property of the input that you think is useful for classification.
(dictionary.com: a prominent or conspicuous part or characteristic)

x = (1, x1, x2) ← input
w = (w0, w1, w2) ← linear model

}

dvc = 3

c© AML Creator: Malik Magdon-Ismail Linear Classification and Regression: 12 /21 PLA on digits data −→

Intensity and Symmetry Features

feature: an important property of the input that you think is useful for classification.
(dictionary.com: a prominent or conspicuous part or characteristic)

x = (1, x1, x2) ← input
w = (w0, w1, w2) ← linear model

}

dvc = 3
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Pocket vs perceptron 
Comparison on image data:  distinguishing between the digits “1” 
and “5” (see page 83 in the book): 
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Pocket on Digits Data
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