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Learning theory and the VC dimension 

Chapters 1-2 

1 https://xkcd.com/882/ 

Computational learning theory 

What can we prove about the relationship between Ein and Eout 
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The bin model 

Consider a bin with green and 
red marbles where the 
probability of picking a red 
marble is an unknown 
parameter µ. 
 
Pick a sample of N marbles to 
estimate it. 
The fraction of red marbles 
in the sample:  ν 
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Population Mean from Sample Mean

SAMPLE

BIN

µ = probability to
pick a red marble

ν = fraction of red
marbles in sample

The BIN Model

• Bin with red and green marbles.

• Pick a sample of N marbles independently.

• µ: probability to pick a red marble.
ν: fraction of red marbles in the sample.

Sample −→ the data set −→ ν

BIN −→ outside the data −→ µ

Can we say anything about µ (outside the data) after observing ν (the data)?
ANSWER: No. It is possible for the sample to be all green marbles and the bin to be mostly red.

Then, why do we trust polling (e.g. to predict the outcome of the presidential election).
ANSWER: The bad case is possible, but not probable.
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What can we say about µ after observing the data? 

The bin model 
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µ and ν could be far off, but that’s not likely.  
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Hoeffding’s inequality 

In a big sample produced in an i.i.d. fashion µ and ν are close 
with high probability: 
 
 
 
 
 
 
In other words, the statement µ = ν is probably approximately 
correct (PAC)  
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ν µ

N ν µ ϵ

[ |ν − µ| > ϵ ] ≤ 2e−2ϵ2N

µ = ν

⃝ AM
L

Hoeffding’s inequality 

In a big sample produced in an i.i.d. fashion µ and ν are close 
with high probability: 
 
 
 
 
 
 
Example:  pick a sample of size N=1000. 
99% of the time µ and ν are within 0.05 of each other. 
In other words, if I claim that µ ∈ [ν – 0.05, ν + 0.05], I will be 
right 99% of the time. 
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ν µ

N ν µ ϵ

[ |ν − µ| > ϵ ] ≤ 2e−2ϵ2N

µ = ν

⃝ AM
L

Hoeffding’s inequality 

In a big sample produced in an i.i.d. fashion µ and ν are close 
with high probability: 
 
 
 
 
 
Comments: 
ü  The bound does not depend on µ 
ü  As N grows, our level of certainty increases.   
ü  The more you want to get close, the larger N needs to be. 
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ν µ

N ν µ ϵ

[ |ν − µ| > ϵ ] ≤ 2e−2ϵ2N

µ = ν

⃝ AM
L

Connection to learning 
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Relating the Bin to Learning - the Data

Target Function f Fixed a hypothesis h

Age

In
co

m
e

Age

In
co

m
e

Age

In
co

m
e

green data: h(xn) = f(xn)
red data: h(xn) ̸= f(xn)

Ein(h) = fraction of red data

↑
in-sample

↑
misclassified

KNOWN!
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Connection to learning 

Both µ and ν depend on the 
chosen hypothesis 
ν represents Ein 
µ represents Eout 

 
The Hoeffding inequality 
becomes:  
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Hi

Hi

E

E

(h)out

in(h)

µ ν h

ν E (h)

µ E (h)

P [ |E (h) −E (h)| > ϵ ] ≤ 2e−2ϵ2N

⃝ AM
L
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Are we done? 

Not quite: 
 
The hypothesis h was fixed. 
 
In real learning we have a hypothesis 
set in which we search for one with 
low Ein 
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Hi

Hi

E

E

(h)out

in(h)

µ ν h

ν E (h)

µ E (h)

P [ |E (h) −E (h)| > ϵ ] ≤ 2e−2ϵ2N

⃝ AM
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Generalizing the bin model 

Our hypothesis is chosen from a finite hypothesis set: 
 
 
 
 
 
 
 
 
 
 
Hoeffding’s inequality no longer holds 
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h1 h2 hM

Eout 1h(    ) Eout h2(    ) Eout hM(     )

inE 1h(    ) inE h(    )2 inE hM(     )

. . . . . . . .

top

bottom

⃝ AM
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Let’s play with coins 

A group of students each has a coin, and is asked to do 
the following: 
 
ü  Toss your coin 5 times. 
ü  Report the number of heads. 
 
What’s the smallest number of heads obtained? 
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Let’s play with coins 

Question:  if you toss a fair coin 10 times what’s the 
probability of getting heads 0 times? 
 
0.001 
 
Question:  if you toss 1000 fair coins 10 times each, 
what’s the probability that some coin will lands heads 0 
times? 
 
0.63  
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Do jelly beans cause acne? 

15 https://xkcd.com/882/ 

Do jelly beans cause acne? 

16 https://xkcd.com/882/ 
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Do jelly beans cause acne? 

17 https://xkcd.com/882/ 

Addressing the multiple hypotheses issue 

The solution is simple: 
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P[ |E (g) − E (g)| > ϵ ] ≤ P[ |E (h1) − E (h1)| > ϵ

or |E (h2) − E (h2)| > ϵ

· · ·

or |E (hM) − E (hM)| > ϵ ]

≤
M∑

m=1

P [|E (hm) − E (hm)| > ϵ]

⃝ AM
L

P[ |E (g) − E (g)| > ϵ ] ≤
M∑

m=1

P [|E (hm) − E (hm)| > ϵ]

≤
M∑

m=1

2e−2ϵ2N

P[|E (g) − E (g)| > ϵ] ≤ 2Me−2ϵ2N

⃝ AM
L

P[ |E (g) − E (g)| > ϵ ] ≤
M∑

m=1

P [|E (hm) − E (hm)| > ϵ]

≤
M∑

m=1

2e−2ϵ2N

P[|E (g) − E (g)| > ϵ] ≤ 2Me−2ϵ2N

⃝ AM
L

And the final result: 

Hoeffding says that Ein(g) ≈ Eout(g) for Finite H

P [|Ein(g)−Eout(g)| > ϵ] ≤ 2|H|e−2ϵ2N, for any ϵ > 0.

P [|Ein(g)−Eout(g)| ≤ ϵ] ≥ 1− 2|H|e−2ϵ2N, for any ϵ > 0.

We don’t care how g was obtained, as long as it is from H

Some Basic Probability
Events A,B

Implication
If A =⇒ B (A ⊆ B) then P[A] ≤ P[B].

Union Bound
P[A or B] = P[A ∪ B] ≤ P[A] + P[B].

Bayes’ Rule

P[A|B] =
P[B|A] · P[A]

P[B]

Proof: Let M = |H|.

The event “|Ein(g)−Eout(g)| > ϵ” implies
“|Ein(h1)− Eout(h1)| > ϵ” OR . . .OR “|Ein(hM)− Eout(hM)| > ϵ”

So, by the implication and union bounds:

P[|Ein(g)− Eout(g)| > ϵ] ≤ P

[

M

OR
m=1

|Ein(hM)− Eout(hM)| > ϵ

]

≤
M
∑

m=1

P[|Ein(hm)−Eout(hm)| > ϵ],

≤ 2Me−2ϵ2N .

(The last inequality is because we can apply the Hoeffding bound to each summand)
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Implications of the Hoeffding bound 
 

Lemma: with probability at least 1-δ 
 
 
Proof: 
Choose 
 
Then                                                 i.e., with probability at least 1-δ 
 
                                         and solving for epsilon, 
our result is obtained.  
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Interpreting the Hoeffding Bound for Finite |H|

P [|Ein(g)−Eout(g)| > ϵ] ≤ 2|H|e−2ϵ2N, for any ϵ > 0.

P [|Ein(g)−Eout(g)| ≤ ϵ] ≥ 1− 2|H|e−2ϵ2N, for any ϵ > 0.

Theorem. With probability at least 1− δ,

Eout(g) ≤ Ein(g) +

√

1

2N
log

2|H|

δ
.

We don’t care how g was obtained, as long as g ∈ H

Proof: Let δ = 2|H|e−2ϵ2N . Then

P [|Ein(g)− Eout(g)| ≤ ϵ] ≥ 1− δ.

In words, with probability at least 1− δ,

|Ein(g)−Eout(g)| ≤ ϵ.

This implies

Eout(g) ≤ Ein(g) + ϵ.

From the definition of δ, solve for ϵ:

ϵ =

√

1

2N
log

2|H|

δ
.
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We don’t care how g was obtained, as long as g ∈ H

Proof: Let δ = 2|H|e−2ϵ2N . Then

P [|Ein(g)− Eout(g)| ≤ ϵ] ≥ 1− δ.
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|Ein(g)−Eout(g)| ≤ ϵ.
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Eout(g) ≤ Ein(g) + ϵ.

From the definition of δ, solve for ϵ:

ϵ =

√

1

2N
log

2|H|

δ
.
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Interpreting the Hoeffding Bound for Finite |H|
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Interpreting the Hoeffding Bound for Finite |H|
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Interpreting the Hoeffding Bound for Finite |H|
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In words, with probability at least 1− δ,
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This implies

Eout(g) ≤ Ein(g) + ϵ.
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1
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log

2|H|

δ
.

c⃝ AML Creator: Malik Magdon-Ismail Real Learning is Feasible: 6 /16 Ein is close to Eout for small H −→

Implications of the Hoeffding bound 

Lemma: with probability at least 1-δ 
 
 
 
Implication: 
 
If we also manage to obtain Ein(g) ≈ 0 then  Eout(g) ≈ 0. 
 
 
The tradeoff: 
v  Small |H| à Ein ≈ Eout 

v  Large |H| à Ein ≈ 0 
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Interpreting the Hoeffding Bound for Finite |H|

P [|Ein(g)−Eout(g)| > ϵ] ≤ 2|H|e−2ϵ2N, for any ϵ > 0.

P [|Ein(g)−Eout(g)| ≤ ϵ] ≥ 1− 2|H|e−2ϵ2N, for any ϵ > 0.

Theorem. With probability at least 1− δ,

Eout(g) ≤ Ein(g) +

√

1

2N
log

2|H|

δ
.

We don’t care how g was obtained, as long as g ∈ H

Proof: Let δ = 2|H|e−2ϵ2N . Then

P [|Ein(g)− Eout(g)| ≤ ϵ] ≥ 1− δ.

In words, with probability at least 1− δ,

|Ein(g)−Eout(g)| ≤ ϵ.

This implies

Eout(g) ≤ Ein(g) + ϵ.

From the definition of δ, solve for ϵ:

ϵ =

√

1

2N
log

2|H|

δ
.
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Ein Reaches Outside to Eout when |H| is Small

Eout(g) ≤ Ein(g) +

√

1

2N
log

2|H|

δ
.

If N ≫ ln |H|, then Eout(g) ≈ Ein(g).

• Does not depend on X , P (x), f or how g is found.

• Only requires P (x) to generate the data points independently and also the test point.

What about Eout ≈ 0?
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The 2 Step Approach to Getting Eout ≈ 0:

(1) Eout(g) ≈ Ein(g).
(2) Ein(g) ≈ 0.

Together, these ensure Eout ≈ 0.

How to verify (1) since we do not know Eout

– must ensure it theoretically - Hoeffding.

We can ensure (2) (for example PLA)
– modulo that we can guarantee (1)

There is a tradeoff:

• Small |H| =⇒ Ein ≈ Eout

• Large |H| =⇒ Ein ≈ 0 is more likely.
in-sample error

model complexity
√

1
2N log 2|H|

δ

out-of-sample error

|H|

E
rr
or

|H|∗
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Are we done? 

Lemma: with probability at least 1-δ 
 
 
 
Implication: 
 
 
This does not apply to even a simple classifier such as the 
perceptron:  we do NOT have a finite hypothesis space. 
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Interpreting the Hoeffding Bound for Finite |H|

P [|Ein(g)−Eout(g)| > ϵ] ≤ 2|H|e−2ϵ2N, for any ϵ > 0.

P [|Ein(g)−Eout(g)| ≤ ϵ] ≥ 1− 2|H|e−2ϵ2N, for any ϵ > 0.

Theorem. With probability at least 1− δ,

Eout(g) ≤ Ein(g) +

√

1

2N
log

2|H|

δ
.

We don’t care how g was obtained, as long as g ∈ H
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If N ≫ ln |H|, then Eout(g) ≈ Ein(g).

• Does not depend on X , P (x), f or how g is found.

• Only requires P (x) to generate the data points independently and also the test point.
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