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Learning theory and the VC dimension 

Chapter 2 
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The 2 Step Approach to Getting Eout ≈ 0:

(1) Eout(g) ≈ Ein(g).
(2) Ein(g) ≈ 0.

Together, these ensure Eout ≈ 0.

How to verify (1) since we do not know Eout

– must ensure it theoretically - Hoeffding.

We can ensure (2) (for example PLA)
– modulo that we can guarantee (1)

There is a tradeoff:

• Small |H| =⇒ Ein ≈ Eout

• Large |H| =⇒ Ein ≈ 0 is more likely.
in-sample error
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c⃝ AML Creator: Malik Magdon-Ismail Real Learning is Feasible: 8 /16 Summary: feasibility of learning −→

Relating Ein and Eout 

Last week we found that for a finite set of hypotheses we have 
that: 
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P[ |E (g) − E (g)| > ϵ ] ≤
M∑

m=1

P [|E (hm) − E (hm)| > ϵ]

≤
M∑

m=1

2e−2ϵ2N

P[|E (g) − E (g)| > ϵ] ≤ 2Me−2ϵ2N

⃝ AM
L

Implications of the Hoeffding bound 

Lemma: with probability at least 1-δ 
 
 
 
Implication: 
 
If we also manage to obtain Ein(g) ≈ 0 then  Eout(g) ≈ 0. 
 
 
The tradeoff: 
v  Small |H| à Ein ≈ Eout 

v  Large |H| à Ein ≈ 0 
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Interpreting the Hoeffding Bound for Finite |H|

P [|Ein(g)−Eout(g)| > ϵ] ≤ 2|H|e−2ϵ2N, for any ϵ > 0.

P [|Ein(g)−Eout(g)| ≤ ϵ] ≥ 1− 2|H|e−2ϵ2N, for any ϵ > 0.

Theorem. With probability at least 1− δ,

Eout(g) ≤ Ein(g) +

√

1

2N
log

2|H|

δ
.

We don’t care how g was obtained, as long as g ∈ H

Proof: Let δ = 2|H|e−2ϵ2N . Then

P [|Ein(g)− Eout(g)| ≤ ϵ] ≥ 1− δ.

In words, with probability at least 1− δ,

|Ein(g)−Eout(g)| ≤ ϵ.

This implies

Eout(g) ≤ Ein(g) + ϵ.

From the definition of δ, solve for ϵ:

ϵ =

√

1

2N
log

2|H|

δ
.

c⃝ AML Creator: Malik Magdon-Ismail Real Learning is Feasible: 6 /16 Ein is close to Eout for small H −→

Ein Reaches Outside to Eout when |H| is Small

Eout(g) ≤ Ein(g) +

√

1

2N
log

2|H|

δ
.

If N ≫ ln |H|, then Eout(g) ≈ Ein(g).

• Does not depend on X , P (x), f or how g is found.

• Only requires P (x) to generate the data points independently and also the test point.

What about Eout ≈ 0?
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Implications of the Hoeffding bound 

Lemma: with probability at least 1-δ 
 
 
 
Implication: 
 
 
This does not apply to even a simple classifier such as the 
perceptron. 
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A bound for infinite hypothesis spaces 

For finite hypothesis spaces: 
 
 
 
 
The corresponding result for infinite hypothesis spaces: 
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What Will The Theory of Generalization Achieve?

Eout(g) ≤ Ein(g) +

√

1

2N
ln
2|H|

δ
in-sample error

model complexity
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E
rr
or

|H|∗

↓

Eout(g) ≤ Ein(g) +

√

8

N
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model complexity

E
rr
or

The new bound will be applicable to infinite H.

c⃝ AML Creator: Malik Magdon-Ismail Training Versus Testing: 3 /18 |H| is overkill −→

The union bound is very loose 

We got that: 
 
 
 
 
 
 
The union bound for bad events: 
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P[ |E (g) − E (g)| > ϵ ] ≤
M∑

m=1

P [|E (hm) − E (hm)| > ϵ]

≤
M∑

m=1

2e−2ϵ2N

P[|E (g) − E (g)| > ϵ] ≤ 2Me−2ϵ2N

⃝ AM
L

Why is |H| an Overkill

How did |H| come in?

Bad events

Bg = {|Eout(g)− Ein(g)| > ϵ}

Bm = {|Eout(hm)− Ein(hm)| > ϵ}

We do not know which g, so use a worst case union bound.

P[Bg] ≤ P[any Bm] ≤
|H|
∑

m=1

P[Bm]. B3

B1 B2

• Bm are events (sets of outcomes); they can overlap.

• If the Bm overlap, the union bound is loose.

• If many hm are similar, the Bm overlap.

• There are “effectively” fewer than |H| hypotheses,.

• We can replace |H| by something smaller.

|H| fails to account for similarity between hypotheses.

c⃝ AML Creator: Malik Magdon-Ismail Training Versus Testing: 4 /18 Measuring diversity on N points −→

M

B Bm

|E (hm) − E (hm)| > ϵ

P[B1 or B2 or · · · or BM ]

B3

B1 B2

≤P[B1] + P[B2] + · · · + P[BM ]
︸ ︷︷ ︸

⃝ AML

M
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⃝ AML

M

B Bm

|E (hm) − E (hm)| > ϵ

P[B1 or B2 or · · · or BM ]

B3

B1 B2

≤P[B1] + P[B2] + · · · + P[BM ]
︸ ︷︷ ︸

⃝ AML

How to avoid infinite hypothesis spaces 

Most hypotheses are very similar when viewed through the 
lens of a finite dataset. 
 
 
 
 
 
 
 
 
 
From the perspective of the dataset all these hyperplanes 
are identical.  They define the same dichotomy on the 
given data. 
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A Data Set Reveals the True Colors of an H

H H through the eyes of the D

c⃝ AML Creator: Malik Magdon-Ismail Training Versus Testing: 7 /18 Just one dichotomy −→

Dichotomies 

A hypothesis:  
 
 
A dichotomy: 
 
 
The number of hypotheses can be infinite.   
The number of dichotomies is bounded by 2N. 
 
The restriction of the hypothesis space to a finite set of 
points: 
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h : X → {−1,+1}

h : {x1,x2, · · · ,xN} → {−1,+1}

|H|

|H(x1,x2, · · · ,xN)| 2N

M

⃝ AML

h : X → {−1,+1}

h : {x1,x2, · · · ,xN} → {−1,+1}

|H|

|H(x1,x2, · · · ,xN)| 2N

M

⃝ AML

The Growth Function mH(N )

Define the the restriction of H to the inputs x1,x2, . . . ,xN :

H(x1, . . . ,xN) = {(h(x1), . . . , h(xN)) | h ∈ H} (set of dichotomies induced by H)

The Growth Function mH(N)

The largest set of dichotomies induced by H:

mH(N) = max
x1,...,xN

|H(x1, . . . ,xN)|.

mH(N) ≤ 2N .

Can we replace |H| by mH, an effective number of hypotheses?

• Replacing |H| with 2N is no help in the bound. (why?)
(

the error bar is

√

1

2N
ln

2|H|

δ

)

• We want mH(N) ≤ poly(N) to get a useful error bar.

c⃝ AML Creator: Malik Magdon-Ismail Training Versus Testing: 10 /18 Example: 2-d perceptron −→
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The growth function 

Definition of the growth function,   
 
The largest set of dichotomies induced by H: 
 
 
 
 
The growth function satisfies: 
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Example:  2-d linear model 

The growth function for a linear model in 2-d 
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Example: 2-D Perceptron Model

Cannot implement Can implement all 8 Can implement at most 14

mH(3) = 8 = 23.

mH(4) = 14 < 24.

What is mH(5)?
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Example: a 1-d classification model 

Consider decision boundaries of the form 
 
 
 
 
 
 
 
 
 
There are N + 1 possible dichotomies, depending on the value of 
w0, i.e. 
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Example: 1-D Positive Ray Model

w0

· · ·

x1 x2

+

· · · xN

• h(x) = sign(x− w0)

• Consider N points.

• There are N + 1 dichotomies depending on where you put w0.

•mH(N) = N + 1.

c⃝ AML Creator: Malik Magdon-Ismail Training Versus Testing: 12 /18 Example: 2-d positive rectangle −→
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Classification with rectangles 

With N = 4 points H can implement all dichotomies: 
 
 
i.e. 
 
 
 
 
 
 
But  
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Example: Positive Rectangles in 2-D

N = 4 N = 5

x1

x2

x3

x4

x1

x2

x3

x4

x4

H implements all dichotomies some point will be inside a rectangle defined by others

mH(4) = 24 mH(5) < 25

We have not computed mH(5) – not impossible, but tricky.
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Classification with convex sets 

Consider hypotheses generated by convex polygons: 
 
 
 
 
 
 
 
 
 
 
Any dichotomy on a circle can be generated by a convex set. 
 
Therefore: 
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H h : R
2 → {−1,+1}

h(x) = +1

mH(N) = 2N

N

⃝ AML
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mH(N) = 2N

N

⃝ AML

The growth function 

In our examples: 
 
 
 
 
 
 
 
 
 
A breakpoint occurs whenever there is an n such that 
 
When that is the case we have hope for good generalization.  
 

14 

Example Growth Functions

N
1 2 3 4 5 · · ·

2-D perceptron 2 4 8 14 · · ·

1-D pos. ray 2 3 4 5 · · ·

2-D pos. rectangles 2 4 8 16 < 25 · · ·

•mH(N) drops below 2N – there is hope for the generalization bound.

• A break point is any n for which mH(n) < 2n.

c⃝ AML Creator: Malik Magdon-Ismail Training Versus Testing: 14 /18 Combinatorial puzzle: dichotomys on 3 points −→
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The growth function 

Recall that 
 
 
 
 
If we replace M with mH(N) … 
 
All is well as long as mH(N) is polynomial 
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[ |E − E | > ϵ ] ≤ 2Me−2ϵ2N

mH(N) M

mH(N) =⇒

mH(N)

⃝ AML

Bounding the growth function 

Theorem.  If k is a breakpoint for H, i.e. mH(k) < 2k, then 
 
 
 
 
Corolary:  mH(N) is polynomial 
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Once bitten, twice shy . . . Once Broken, Forever Polynomial

Theorem. If k is any break point for H, so mH(k) < 2k, then

mH(N) ≤
k−1
∑

i=0

(

N

i

)

.

Facts (Problems 2.5 and 2.6):

k−1
∑

i=0

(

N

i

)

≤

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

Nk−1 + 1

(

eN

k − 1

)k−1 (polynomial in N)

This is huge: if we can replace |H| with mH(N) in the bound, then learning is feasible.

c⃝ AML Creator: Malik Magdon-Ismail Bounding the Growth Function: 26 /31 There’s good, bad, no ugly −→

recap: The Vapnik-Chervonenkis Bound (VC Bound)

P [|Ein(g)−Eout(g)| > ϵ] ≤ 4mH(2N)e−ϵ2N/8, for any ϵ > 0.
P[|Ein(g)−Eout(g)|>ϵ]≤2|H|e−2ϵ2N ← finite H

P [|Ein(g)−Eout(g)| ≤ ϵ] ≥ 1− 4mH(2N)e−ϵ2N/8, for any ϵ > 0.
P[|Ein(g)−Eout(g)|≤ϵ]≥1−2|H|e−2ϵ2N ← finite H

Eout(g) ≤ Ein(g) +
√

8
N
log 4mH(2N)

δ
, w.p. at least 1− δ.

Eout(g)≤Ein(g)+
√

1
2N log 2|H|

δ
← finite H

mH(N) ≤
k−1∑∑∑

i=1

(
N
i

)

≤ Nk−1 + 1 k is a break point.

c⃝ AML Creator: Malik Magdon-Ismail Approximation Versus Generalization: 2 /22 VC dimension −→
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The generalization bound 

We have: 
v  A polynomial bound on mH(N). 

What is still needed: 
v  Demonstrate that you can replace |H| with mH(N) in the 

generalization bound 

The end-result: 
For any ε > 0 
 
 
For any δ > 0 we have that with probability > 1 - δ 
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The Vapnik-Chervonenkis Bound (VC Bound)

P [|Ein(g)−Eout(g)| > ϵ] ≤ 4mH(2N)e−ϵ2N/8, for any ϵ > 0.

P [|Ein(g)−Eout(g)| ≤ ϵ] ≥ 1− 4mH(2N)e−ϵ2N/8, for any ϵ > 0.

Eout(g) ≤ Ein(g) +
√

8
N
log 4mH(2N)

δ
, w.p. at least 1− δ.
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The VC dimension 

If k is a breakpoint then 
 
Let k* be the smallest k that is a breakpoint. 
 
Definition [VC dimension]:  dVC = k* - 1 
(the largest N that can be shattered, i.e. mH(N) = 2N) 
 
Consequences: 
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The VC Dimension dvc

mH(N) ∼ Nk−1

The tightest bound is obtained with the smallest break point k∗.

Definition [VC Dimension] dvc = k∗ − 1.

The VC dimension is the largest N which can be shattered (mH(N) = 2N).
N ≤ dvc: H could shatter your data (H can shatter some N points).

N > dvc: N is a break point for H; H cannot possibly shatter your data.

mH(N) ≤ Ndvc + 1 ∼ Ndvc

Eout(g) ≤ Ein(g) + O

(√

dvc logN
N

)

c⃝ AML Creator: Malik Magdon-Ismail Approximation Versus Generalization: 3 /22 dvc versus number of parameters −→

A Single Parameter Characterizes Complexity

Eout(g) ≤ Ein(g) +

√

1

2N
log

2|H|
δ

in-sample error

model complexity

out-of-sample error

|H|

E
rr
or

|H|∗

↓

Eout(g) ≤ Ein(g) +

√

8

N
log

4((2N)dvc + 1)

δ

︸ ︷︷ ︸

penalty for model complexity

Ω(dvc)
in-sample error

model complexity

out-of-sample error

VC dimension, dvc

E
rr
or

d∗
vc

c⃝ AML Creator: Malik Magdon-Ismail Approximation Versus Generalization: 8 /22 Sample complexity −→
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N
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The VC dimension is the largest N which can be shattered (mH(N) = 2N).
N ≤ dvc: H could shatter your data (H can shatter some N points).

N > dvc: N is a break point for H; H cannot possibly shatter your data.

mH(N) ≤ Ndvc + 1 ∼ Ndvc

Eout(g) ≤ Ein(g) + O

(√

dvc logN
N

)
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Implications 

If dVC(H) is finite: the end-result of training will 
generalize. 
 
This statement is 
ü  Independent of the learning algorithm 
ü  Independent of the distribution of the data 
ü  Independent of the target function 
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VC dimension for linear models 

 
For two dimensional data  
dVC = 3. 
 
For d-dimensional data  
dVC = d + 1. 
 
And this happens to be the number of parameters. 
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Example: 2-D Perceptron Model

Cannot implement Can implement all 8 Can implement at most 14

mH(3) = 8 = 23.

mH(4) = 14 < 24.

What is mH(5)?
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What about nonlinear models? 

Consider for example the mapping associated with a 
polynomial kernel of degree D where the original data is d 
dimensional. 
 
What is the VC dimension in this case? 
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Degrees of freedom 

The VC dimension is related to the number of parameters 
of a model: 
 
 
 
 
 
 
 
 
 
 
It’s not always a linear relationship. 
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The VC-dimension is an Effective Number of Parameters

N
1 2 3 4 5 · · · #Param dvc

2-D perceptron 2 4 8 14 · · · 3 3

1-D pos. ray 2 3 4 5 · · · 1 1

2-D pos. rectangles 2 4 8 16 < 25 · · · 4 4

pos. convex sets 2 4 8 16 32 · · · ∞ ∞

There are models with few parameters but infinite dvc.

There are models with redundant parameters but small dvc.
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Is the VC bound useful? 

We can try to get an idea how many data points we need 
for a given level of performance: 
 
 
 
 
 
 
 
For a model with dVC = 3, ε = 0.1, δ = 0.1, you get N = 
30,000. 
 
The VC bound is very loose! 
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Sample Complexity: How Many Data Points Do You Need?

Set the error bar at ϵ.

ϵ =

√

8

N
ln
4((2N)dvc + 1)

δ

Solve for N :

N =
8

ϵ2
ln
4((2N)dvc + 1)

δ
= O (dvc lnN)

Example. dvc = 3; error bar ϵ = 0.1; confidence 90% (δ = 0.1).
A simple iterative method works well. Trying N = 1000 we get

N ≈
1

0.12
log

(
4(2000)3 + 4

0.1

)

≈ 21192.

We continue iteratively, and converge to N ≈ 30000.
If dvc = 4, N ≈ 40000; for dvc = 5, N ≈ 50000.

(N ∝ dvc, but gross overestimates)

Practical Rule of Thumb: N = 10× dvc
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VC dimension for maximum margin classifiers 

For a general linear classifier 
 
 
For a maximum margin classifier with margin ρ and data 
that is normalized to be unit vectors: 
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dV C = d+ 1

dV C(⇢) = min
�
d1/⇢2e

�
+ 1
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VC dimension for neural networks 

For a neural network with sigmoid units that has V hidden 
units and Q weights: 
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dV C = O(V Q)


