Learning theory and the VC dimension

Chapter 2
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Relating E;, and E_;

Last week we found that for a finite set of hypotheses we have
that:

Pl|En(9) — Eou(g)| > €] < 2Me72N

Implications of the Hoeffding bound

Lemma: with probability at least 1-3

Implication:  If N >> In|#|, then Eoy(g) = Ew(g).
If we also manage to obtain E; (g) # O then E,(g) # 0.

out-of-sample error

The tradeoff:
. Small [H| > E;, ® E,
. Large |H| > E, =0
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Implications of the Hoeffding bound

Lemma: with probability at least 1-3

Implication:  If N > In|H|, then Eoy(g) = Eu(g).

This does not apply to even a simple classifier such as the
perceptron.
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A bound for infinite hypothesis spaces

For finite hypothesis spaces:

Eout(g) < Eiu(g> +

The corresponding result for infinite hypothesis spaces:

8 4m
Eout(g) S Ein(.q) + Nhl 6H

The union bound is very loose

We got that: )
P|Ein(g9) — Eou(g)| > €] < 2Me >V
The Bad events B, are

“lEin(hm) - Eout(hm)l > €

The union bound for bad events:

P[B; or By or --- or By
B;
<P[By] + P[Bs] + - - - + P[Bu]
no overlaps: M terms

How to avoid infinite hypothesis spaces

Most hypotheses are very similar when viewed through the
lens of a finite dataseft.

From the perspective of the dataset all these hyperplanes
are identical. They define the same dichotomy on the
given data.

Dichotomies
A hypothesis: h : X — {_1’ _|_1}
Adichotomy: h: {x1,X9,--- ,xy} — {—1,+1}
The number of hypotheses can be infinite.
The number of dichotomies is bounded by 2N.
The restriction of the hypothesis space to a finite set of

points:
’H(Xh oo 7XN) = {(}Z(Xl), ey h(X;\I)) ‘ h e H}
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The growth function
Definition of the growth function, my(N)
The largest set of dichotomies induced by H:

my(N) = max |H(x1,...,Xn)|.

X1, XN

The growth function satisfies:

Example: 2-d linear model

The growth function for a linear model in 2-d

X [ o
(o] [ ] X
X X
C o
Cannot implement Can implement all 8 Can implement at most 14

Example: a 1-d classification model

Consider decision boundaries of the form

h(x) = sign(z — wy)

There are N + 1 possible dichotomies, depending on the value of

Wo, i.e.
mH(N) =N+1.

Classification with rectangles

With N = 4 points H can implement all dichotomies:

ie. my(4) =2

)< 25

Ut

But  my(
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Classification with convex sets

Consider hypotheses generated by convex polygons:

Any dichotomy on a circle can be generated by a convex set.

mH(N) = 2N

Therefore:

The growth function

In our examples:

2-D perceptron 2 4 8 14

w
e
ot

1-D pos. ray 2

2-D pos. rectangles 2 4 8 16 <20 ...

A breakpoint occurs whenever there is an n such that my(n) < 2".

When that is the case we have hope for good generalization.

The growth function

Recall that

P [ ’Ein - E011‘r,| > 6] S 2Me_262N

If we replace M with my(N) ...

All is well as long as my(N) is polynomial

Bounding the growth function

Theorem. If kis a breakpoint for H, i.e. my(k) < 2%, then
k-1
N
my(N) < ( . ) .

Corolary: my(N) is polynomial

(V) < S (N) < NF141

i=1
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The generalization bound

We have:
= A polynomial bound on my(N).

What is still needed:

. Demonstrate that you can replace |H| with m(N) in the
generalization bound

The end-result:
Forany €>0

P[|Ew(9) — Eou(g)| > €] < 4my(2N)e <N/3

For any & > O we have that with probability >1 -3

Eout(g) S Eiu(g) + % IOg mufum

The VC dimension

If k is a breakpoint then iy (N) ~ NF-1
Let k* be the smallest k that is a breakpoint.

Definition [VC dimension]: dy. = k* - 1
(the largest N that can be shattered, i.e. my(N) = 2V)

Consequences:  my(N) < Nhe 41 ~ N«

Implications

If dy(H) is finite: the end-result of training will
generalize.

This statement is

. Independent of the learning algorithm

+ Independent of the distribution of the data
+ Independent of the target function

VC dimension for linear models

For two dimensional data

dvc = 3. ° x &

Can implement all 8 Can implement at most 14

For d-dimensional data
dyc=d+1.

And this happens to be the number of parameters.
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What about nonlinear models?

Consider for example the mapping associated with a
polynomial kernel of degree D where the original data is d
dimensional.

What is the VC dimension in this case?

Degrees of freedom

The VC dimension is related to the number of parameters
of a model:

N
1 2 3 4 5) <o | #Param | dyc
2-D perceptron 2 4 8 14 .- 3 3
1-D pos. ray 2 3 4 5 e 1 1
2-D pos. rectangles 2 4 8 6 <2°... 4 4
pos. convex sets 2 4 8 16 32 - o0 o0

It's not always a linear relationship.

Is the VC bound useful?

We can try to get an idea how many data points we need
for a given level of performance:

For a model with dy.=3,€=0.1,3=0.1, you get N =
30,000.

The VC bound is very loosel

VC dimension for maximum margin classifiers

For a general linear classifier
dyve=d+1

For a maximum margin classifier with margin p and data
that is normalized to be unit vectors:

dve(p) = min ([1/p%]) +1
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VC dimension for neural networks

For a neural network with sigmoid units that has V hidden
units and Q weights:

dve =0(VQ)




