

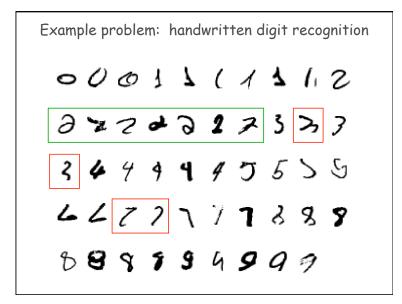
Machine learning and related fields

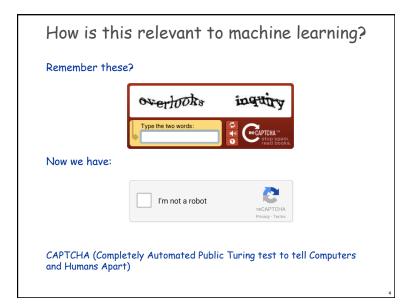
Machine learning: the construction and study of systems that learn from data.

Pattern recognition: the same field, different practitioners

Data mining / big data: using ML to discover patterns in (big) data

Statistics and probability: a lot of algorithms have a probabilistic flavor





Tasks best solved by a learning algorithm

Recognizing patterns and anomalies:

- Face recognition
- Handwritten or spoken words
- Medical images
- Unusual credit card transactions
- Unusual patterns of sensor readings (in nuclear power plants or car engines)
- Stock prices

Examples of machine learning on the web

Spam filtering Recommendation systems (amazon, netflix):

Lots of noisy data.

Information retrieval:

 Find documents or images that are relevant to a query.

http://www.kdnuggets.com/2014/12/cartoon-unexpecteddata-science-recommendations.html "The machine learning algorithm wants to know if we'd like a dozen wireless mice to feed the Python book we just bought."

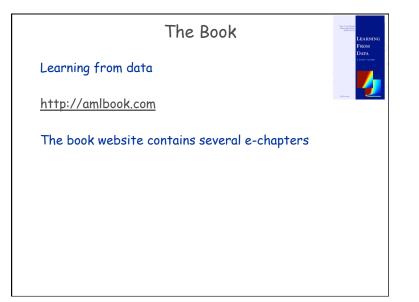




Course Objectives

The machine learning toolbox

- Formulating a problem as an ML problem
- Understanding a variety of ML algorithms
- Running and interpreting ML experiments
- Understanding what makes ML work theory and practice



Grading

Assignments + project are 95% of the grade

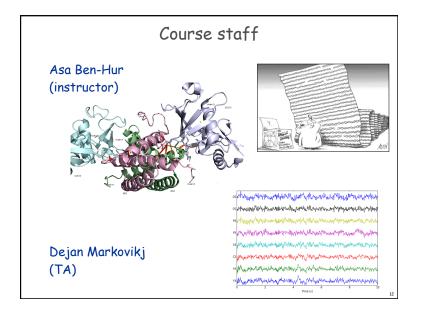
Of that: 5 assignments, worth 80%

Combination of implementation, running ML experiments, and theory questions

A project assignment worth 20%

• You choose what you want to work on!

The rest: Canvas quizzes



About this course

Course webpage:

http://www.cs.colostate.edu/~cs545

Slides/assignments are posted on the course webpage's schedule page.

Canvas will be used for: forums, grades, guizzes

Piazza will be our primary communication tool

Implementation: Python

Why Python?

- * A concise and intuitive language
- Simple, easy to learn syntax ۰.
- Highly readable, compact code ¢.
- Supports object oriented and functional ۰. programming
- * Strong support for integration with other languages (C,C++, Java)

Implementation: Python

Why Python for ML?

- An interpreted language allows for interactive data analysis
- * Libraries for plotting and vector/matrix computation
- Cross-platform compatibility \$
- Free ۰.
- Language of choice for many ML researchers (other \$ options: matlab, R); many ML packages available.

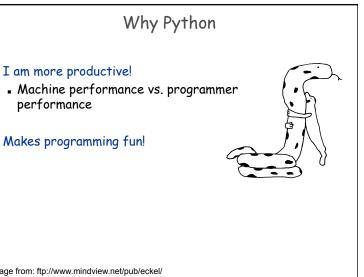
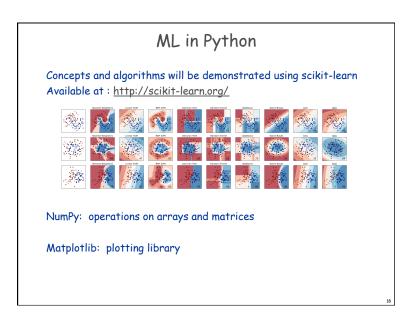


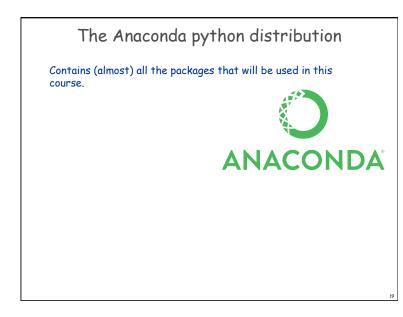
image from: ftp://www.mindview.net/pub/eckel/ LovePython.zip

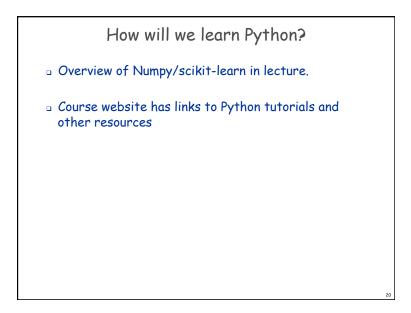
2.x or 3.x?

Python 3 is a non-backward compatible version that removed a few "warts" from the language.

We will use Python 3.







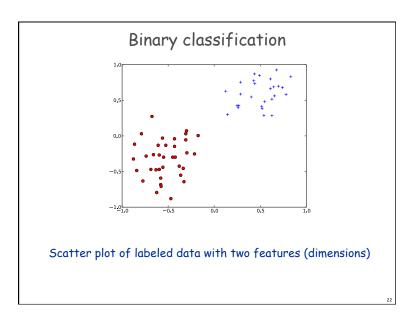
Labeled	data
---------	------

E-mail	feature ₁	feature ₂	Spam?
1	1	1	1
2	1	0	-1
3	0	1	-1
4	0	0	1
5	0	0	-1

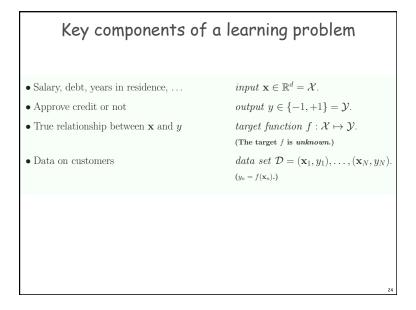
feature₁ and feature₂ are two characteristics of emails (e.g. the presence of the word "viagara"). These are called features.

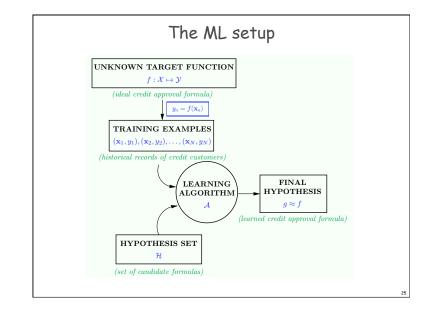
Spam? Is the label associated with the each email

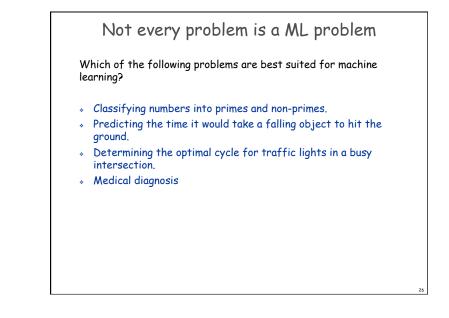
This is a binary classification problem

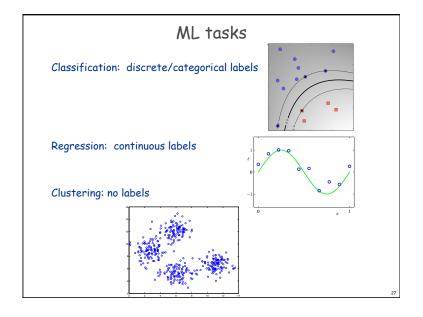


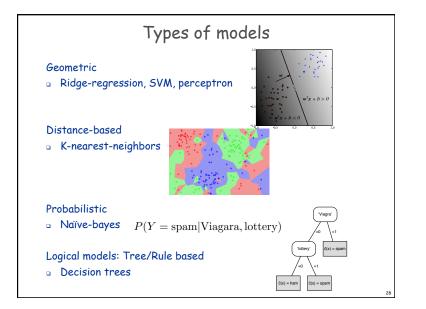
And	other example	: Credit appro	oval
Should an o	applicant be approved	for credit?	
	Feature	Value	
	Gender	Male	
	Salary	70,000	
	Debt	21,000	
	Years in job	1 year	











Types of learning tasks

Supervised learning

• Learn to predict output given labeled examples

Unsupervised learning

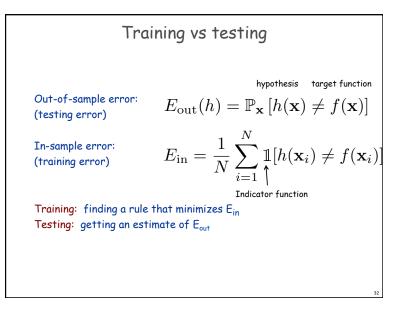
- Data is unlabeled
- Create an internal representation of the input e.g. form clusters; extract features
- Most "big" datasets do not come with labels

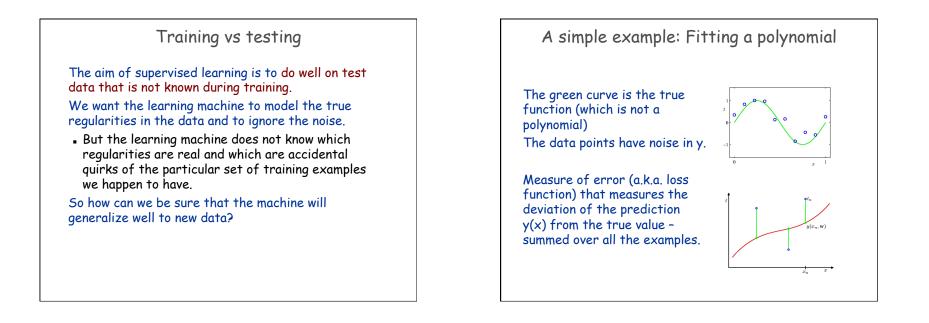
Reinforcement learning

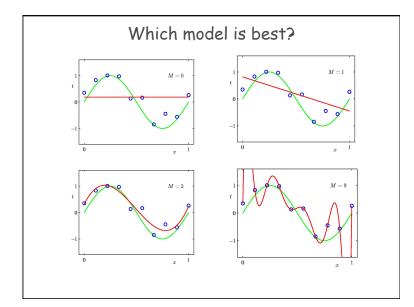
Maximizing "reward" (not covered).

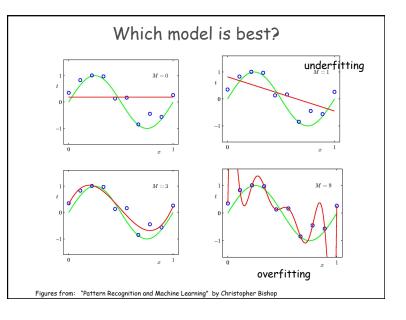
Human	٧S	machine	learning	

Human	Machine
Observe someone, then repeat	Supervised Learning
Keep trying until it works (riding a bike)	Reinforcement Learning
Memorize	k-Nearest Neighbors
20 Questions	Decision Tree
A network of neurons with complex interconnections	Neural networks









Trading off goodness of fit against model complexity You can only expect a model to generalize well if it explains the data surprisingly well given the complexity of the model. If the model has as many degrees of freedom as the data, it can fit the data perfectly. But so what?

Measure of model complexity

in-sample error

<section-header>What we'll cover Supervised learning . Linear classifiers . Support vector machines . Neural networks and deep learning . Nearest neighbor classifiers . Probabilistic classifiers . Decision trees and ensemble models Dusupervised learning . Clustering . Dimensionality reduction Running and interpreting ML experiments