Linear models and the perceptron algorithm

Chapters 1, 3.1

Labeled data

A labeled dataset:

$$
\mathcal{D}=\left\{\left(\mathbf{x}_{i}, y_{i}\right)\right\}_{i=1}^{N}
$$

Where $\mathbf{x}_{i} \in \mathbb{R}^{d}$ are d-dimensional vectors

The labels:
are discrete for classification problems (e.g. $+1,-1$) for binary classification

Labeled data

A labeled dataset:

$$
\mathcal{D}=\left\{\left(\mathbf{x}_{i}, y_{i}\right)\right\}_{i=1}^{N}
$$

Where $\mathbf{x}_{i} \in \mathbb{R}^{d}$ are d-dimensional vectors
The labels:
are continuous values for a regression problem

Labeled data

A labeled dataset:

$$
\mathcal{D}=\left\{\left(\mathbf{x}_{i}, y_{i}\right)\right\}_{i=1}^{N}
$$

Where $\mathbf{x}_{i} \in \mathbb{R}^{d}$ are d-dimensional vectors

We typically assume that that the examples are i.i.d. (independent and identically distributed), and come from an unknown probability distribution $P(x, y)$.

Dot products

Definition: The Euclidean dot product between two vectors is the expression

$$
\mathbf{w}^{T} \mathbf{x}=\sum_{i=1}^{d} w_{i} x_{i}
$$

The dot product is also referred to as inner product or scalar product.
It is sometimes denoted as $\mathbf{W} \cdot \mathbf{X}$
(hence the name dot product).

Dot products

Definition: The Euclidean dot product between two vectors is the expression

$$
\mathbf{w}^{T} \mathbf{x}=\sum_{i=1}^{d} w_{i} x_{i}
$$

The dot product is also referred to as inner product or scalar product.

Geometric interpretation. The dot product between two unit vectors ${ }^{1}$ is the cosine of the angle between them.
The dot product between a vector and a unit vector is the length of its projection in that direction.
And in general:

$$
\mathbf{w}^{\top} \mathbf{x}=\|\mathbf{w}\| \cdot\|\mathbf{x}\| \cos (\theta)
$$

The norm of a vector:

$$
\|\mathbf{x}\|^{2}=\mathbf{x}^{\top} \mathbf{x}
$$

Linear models

Linear models for classification (linear decision boundaries)

Linear models for regression (estimating a linear function)

Linear models for classification

Discriminant/scoring function:
weight vector
bias

Linear models for classification

Decision boundary:

$$
\text { all } x \text { such that }
$$

$$
\mathbf{w}^{\top} \mathbf{x}+b=0
$$

For linear models the the decision boundary is a line in 2-d, a plane in 3-d and a hyperplane in higher dimensions

Linear models for classification

Using the discriminant to make a prediction:

$$
\hat{y}=\operatorname{sign}\left(\mathbf{w}^{\boldsymbol{\top}} \mathbf{x}+b\right)
$$

the sign function equals 1 when its argument is positive and -1 otherwise

Linear models for classification

Decision boundary: all x such that

$$
\mathbf{w}^{\top} \mathbf{x}+b=0
$$

What can you say about the decision boundary when $b=0$?

Linear models for regression

When using a linear model for regression the scoring function is the prediction:

$$
\hat{y}=\mathbf{w}^{\top} \mathbf{x}+b
$$

Why linear?

- It's a good baseline: always start simple
- Linear models are stable
- Linear models are less likely to overfit the training data because they have less parameters. Can sometimes underfit. Often all you need when the data is high dimensional.
- Lots of scalable algorithms

From linear to non-linear

There is a neat mathematical trick that will enable us to use linear classifiers to create non-linear decision boundaries!

From linear to non-linear

Original data: not linearly separable

Linearly separable data

Linearly separable data: there exists a linear decision boundary separating the classes.

Example:

The bias and homogeneous coordinates

Formulating a model that does not have a bias does not reduce the expressivity of the model because we can obtain a bias using the following trick:

Add another dimension x_{0} to each input and set it to 1. Learn a weight vector of dimension $\mathrm{d}+1$ in this extended space, and interpret w_{0} as the bias term. With the notation

$$
\begin{gathered}
\mathbf{w}=\left(w_{1}, \ldots, w_{d}\right) \quad \tilde{\mathbf{w}}=\left(w_{0}, w_{1}, \ldots, w_{d}\right) \\
\tilde{\mathbf{x}}=\left(1, x_{1}, \ldots, x_{d}\right)
\end{gathered}
$$

We have that: $\quad \tilde{\mathbf{w}}^{\top} \tilde{\mathbf{X}}=w_{0}+\mathbf{w}^{\top} \mathbf{X}$

Finding a good hyperplane

We would like a classifier that fits the data, i.e. we would like to find a vector w that minimizes

$$
\begin{aligned}
E_{\mathrm{in}} & =\frac{1}{N} \sum_{i=1}^{N} \mathbb{1}\left[h\left(\mathbf{x}_{i}\right) \neq f\left(\mathbf{x}_{i}\right)\right] \\
& \left.=\frac{1}{N} \sum_{i=1}^{N} \mathbb{1}\left[\operatorname{sign}\left(\mathbf{w}^{\top} \mathbf{x}_{i}\right) \neq y_{i}\right)\right]
\end{aligned}
$$

This is a difficult problem because of the discrete nature of the indicator and sign function (known to be NP-hard).

The perceptron algorithm (Rosenblatt, 1957)

Idea: iterate over the training examples, and update the weight vector w in a way that would make x_{i} is more likely to be correctly classified.
Let's assume that x_{i} is misclassified, and is a positive example i.e.

$$
\mathbf{w}^{\top} \mathbf{x}_{i}<0
$$

Note: we're learning a classifier without a bias term
We would like to update w to w ' such that

$$
\left(\mathbf{w}^{\prime}\right)^{\top} \mathbf{x}_{i}>\mathbf{w}^{\top} \mathbf{x}_{i}
$$

This can be achieved by choosing

$$
\mathbf{w}^{\prime}=\mathbf{w}+\eta \mathbf{x}_{i}
$$

$0<\eta \leq 1$ is the learning rate

Rosenblatt, Frank (1957), The Perceptron--a perceiving and recognizing automaton. Report 85-460-1, Cornell Aeronautical Laboratory.

The perceptron algorithm

If x_{i} is a negative example, the update needs to be opposite.
Overall, we can summarize the two cases as:

$$
\mathbf{w}^{\prime}=\mathbf{w}+\eta y_{i} \mathbf{x}_{i}
$$

```
Input: labeled data D in homogeneous coordinates
Output: weight vector w
w = 0
converged = false
while not converged :
    converged = true
    for i in 1,...N :
    if }\mp@subsup{\mathbf{x}}{i}{}\mathrm{ is misclassified update w and set
        converged=false
return w
```


Demo

Show jupyter notebook on the perceptron

The perceptron algorithm

Since the algorithm is not guaranteed to converge if the data is not linearly separable you need to set a limit on the number of iterations:

```
Input: labeled data D in homogeneous coordinates
Output: weight vector w
w = 0
converged = false
while (not converged or number of iterations < T) :
    converged = true
    for i in 1,...,N :
        if }\mp@subsup{\mathbf{x}}{i}{}\mathrm{ is misclassified:
            update w and set converged=false
return w
```


The perceptron algorithm

The algorithm is guaranteed to converge if the data is linearly separable, and does not converge otherwise.

Issues with the algorithm:

- The algorithm chooses an arbitrary hyperplane that separates the two classes. It may not be the best one from the learning perspective.
- Does not converge if the data is not separable (can halt after a fixed number of iterations).

There are variants of the algorithm that address these issues (to some extent).

The pocket algorithm

```
Input: labeled data D in homogeneous coordinates
Output: a weight vector w
w = 0, w
converged = false
while (not converged or number of iterations < T) :
    converged = true
    for i in 1,...,N :
        if \mp@subsup{\mathbf{x}}{i}{}}\mathrm{ is misclassified:
            update w and set converged=false
            if w leads to better E Ein than w wocket :
                        \mp@subsup{w}{\mathrm{ pocket }}{}=\mathbf{w}
return w
```

Gallant, S. I. (1990). Perceptron-based learning algorithms. IEEE Transactions on Neural Networks, vol. 1, no. 2, pp. 179-191.

image classification

Features: important properties of the input you think are relevant for classification

In this case we consider the level of symmetry (image - its flipped version) and overall intensity (fraction of pixels that are dark)

pocket algorithm vs perceptron

Comparison on image data: distinguishing between the digits "1" and "5" (see page 83 in the book):

