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Linear models:  the perceptron and  
closest centroid algorithms 

Chapter 1, 7 
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Preliminaries 

Definition:  The Euclidean dot product between two vectors is 
the expression  
 
 
The dot product is also referred to as inner product or scalar 
product. 
It is sometimes denoted as  
(hence the name dot product). 
 
Geometric interpretation.  The dot product between two unit 
vectors is the cosine of the angle between them.   
The dot product between a vector and a unit vector is the 
length of its projection in that direction. 
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Labeled data 

A labeled dataset: 
 
 
 
Where                         are d-dimensional vectors 
 
The labels: 
 
are discrete for classification 
problems (e.g. +1, -1) for binary 
classification 
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D = {(xi, yi)}ni=1

xi 2 Rd

Labeled data 

A labeled dataset: 
 
 
 
Where                         are d-dimensional vectors 
 
The labels: 
 
are continuous values for a  
regression problem 
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Linear models 

Linear models for classification 
 
 
 
 
 
 
Linear models for regression 
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Linear models for classification 
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f(x) = w · x+ bDiscriminant/scoring function: 

weight vector bias 

Linear models for classification 
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Decision boundary: 
 
   all x such that 
 
For linear models the the decision boundary is a line in 2-d, a plane  
in 3-d and a hyperplane in higher dimensions 

f(x) = w · x+ b = 0

Linear models for classification 
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Using the discriminant to 
make a prediction: 

ŷ = sign(w · x+ b)

the sign function equals 1 when its argument is positive and -1 otherwise 
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Linear models for classification 
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Decision boundary: 
    all x such that 
 
 
What can you say about the decision boundary when b = 0? 

f(x) = w · x+ b = 0

Linear models for regression 

When using a linear model for regression the scoring function is 
the prediction: 
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ŷ = w · x+ b

Why linear? 

q  It’s a good baseline:  always start simple 
q  Linear models are stable 
q  Linear models are less likely to overfit the training 

data because they have relatively less parameters.  
Can sometimes underfit.  Often all you need when 
the data is high dimensional. 

q  Lots of scalable algorithms 
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Closest centroid classifier 

Define: 
 
 
 
where Pos/Neg is the number of positive/negative examples. 
This is the center of mass of the positive/negative examples. 
 
Classify an input x according to which center of mass it is 
closest to. 
 
Let’s express this as a linear classifier! 
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xi

See page 21-22 in the textbook 
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Closest centroid classifier 
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Our hyperplane is going be perpendicular to the vector that  
connects the two centers of mass.  Therefore: 

µ(�)

µ(+)

w = µ(+) � µ(�)

w = µ(+) � µ(�)

Closest centroid classifier 
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To find the bias term we use the fact that the midpoint between the 
means is on the hyperplane, i.e.  

µ(�)

µ(+)

w = µ(+) � µ(�)

w · (µ
(+) + µ(�))

2
+ b = 0

(µ(+) + µ(�))
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With a little algebra: 

µ(�)

µ(+)

w = µ(+) � µ(�)

(µ(+) + µ(�))

2

b = �1

2
(µ(+) � µ(�))(µ(+) + µ(�))

||x||2 = x · x
= �1

2
(||µ(+)||2 � ||µ(�)||2)The norm of a vector: 

Linearly separable data 

Linearly separable data:  there exists a linear 
decision boundary separating the classes. 
 
Example: 
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The bias and homogeneous coordinates 

In some cases we will use algorithms that learn a discriminant 
function without a bias term. This does not reduce the 
expressivity of the model because we can obtain a bias using the 
following trick: 
 
Add another dimension x0 to each input and set it to 1. 
Learn a weight vector of dimension d+1 in this extended space, 
and interpret w0 as the bias term.  With the notation  
 
 
 
 
We have that: 
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w̃ · x̃ = w0 +w · x

w̃ = (w0, w1, . . . , wd)w = (w1, . . . , wd)

x̃ = (1, x1, . . . , xd)

See page 4 in the book 

The perceptron algorithm 

Idea:  iterate over the training examples, and update the weight 
vector w such that xi is more likely to be correctly classified. 
 
Let’s assume that xi is misclassified, and is a positive example 
i.e.  
 
We would like to update w to w’ such that 
 
 
This can be achieved by choosing 
 
 
Where                        is the learning rate        
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w

0 · xi > w · xi

w

0 = w + ⌘xi

0 < ⌘  1

w · xi < 0 Note:  we’re learning a classifier 
without a bias term  

Section 7.2 in the book 

The perceptron algorithm 

If xi is a negative example, the update needs to be opposite. 
Overall, we can summarize the two cases as: 
 
 
 
 
 
 

19 

w

0 = w + ⌘yixi

Input:  labeled data D in homogeneous coordinates 
Output:  weight vector w 
 
w = 0 
converged = false 
while not converged : 
    converged = true 
    for i in 1,…,|D| : 
        if xi is misclassified update w and set 
            converged=false 
 

The perceptron algorithm 

The algorithm makes sense, but let’s try to derive in a more 
principled way. 
The algorithm is trying to find a vector w that separates 
positive from negative examples. 
We can express that as: 
 
 
 
For a given weight vector w the degree to which this does not 
hold can be expressed as: 
 
 
 
We want to find w that minimizes or maximizes this criterion? 
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Digression:  gradient descent 

21 Images from http://en.wikipedia.org/wiki/Gradient_descent 

Given a function E(w), the gradient is the direction of  
steepest ascent 
Therefore to minimize E(w), take a step in the direction of the  
negative of the gradient 

Notice that the gradient is perpendicular 
to contours of equal E(w) 

Gradient descent 

We can now express gradient descent as: 
 
 
 
 
where 
 
 
And w(t) is the weight vector at iteration t 
 
The constant η is called the step size (learning rate when used 
in the context of machine learning). 
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The perceptron algorithm 

Let’s apply gradient descent to the perceptron criterion: 
 
 
 
 
 
 
 
 
 
 
 
Which is exactly the perceptron algorithm! 
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E(w) = �
X
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|
xi

@E(w)

@w
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i: xi is misclassified

yixi

w(t+ 1) = w(t)� ⌘
@E(w)

@w

= w(t) + ⌘
X

i: xi is misclassified

yixi

The perceptron algorithm 

The algorithm is guaranteed to converge if the data is linearly 
separable, and does not converge otherwise. 
 
Issues with the algorithm: 
 
q  The algorithm chooses an arbitrary hyperplane that 

separates the two classes.  It may not be the best one from 
the learning perspective. 

q  Does not converge if the data is not separable (can halt after 
a fixed number of iterations). 

There are variants of the algorithm that address these issues 
(to some extent). 
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Perceptron for regression 

Replace the update equation with: 
 
 
 
This is not likely to converge so the algorithm is run for a fixed 
number of training epochs 
 
Training epoch – one complete run through the training data  
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w

0 = w + ⌘(yi � ŷi)
2
xi


