Linear models: the perceptron and closest centroid algorithms

Preliminaries

Definition: The Euclidean dot product between two vectors is the expression \ensuremath{d}

$$\mathbf{w}^T \mathbf{x} = \sum_{i=1}^d w_i x_i$$

The dot product is also referred to as inner product or scalar product.

It is sometimes denoted as $\mathbf{W} \cdot \mathbf{X}$ (hence the name dot product).

Geometric interpretation. The dot product between two unit vectors is the cosine of the angle between them.

The dot product between a vector and a unit vector is the length of its projection in that direction.

Labeled data

A labeled dataset:

$$\mathcal{D} = \{(\mathbf{x}_i, y_i)\}_{i=1}^n$$

Where $\mathbf{x}_i \in \mathbb{R}^d$ are d-dimensional vectors

The labels:

are discrete for classification problems (e.g. +1, -1) for binary classification

Labeled data

A labeled dataset:

$$\mathcal{D} = \{(\mathbf{x}_i, y_i)\}_{i=1}^n$$

Where $\mathbf{x}_i \in \mathbb{R}^d$ are d-dimensional vectors

The labels:

are continuous values for a regression problem

Linear models for classification

Decision boundary: all x such that $f(\mathbf{x}) = \mathbf{w} \cdot \mathbf{x} + b = 0$

What can you say about the decision boundary when b = 0?

Why linear?

- □ It's a good baseline: always start simple
- Linear models are stable
- Linear models are less likely to overfit the training data because they have relatively less parameters.
 Can sometimes underfit. Often all you need when the data is high dimensional.
- Lots of scalable algorithms

Linear models for regression

When using a linear model for regression the scoring function is the prediction:

$$\hat{y} = \mathbf{w} \cdot \mathbf{x} + b$$

Closest centroid classifier

Define:

$$\mu^{(+)} = \frac{1}{Pos} \sum_{\{i|y_i=1\}} \mathbf{x}_i \qquad \mu^{(-)} = \frac{1}{Neg} \sum_{\{i|y_i=-1\}} \mathbf{x}_i$$

where Pos/Neg is the number of positive/negative examples. This is the center of mass of the positive/negative examples.

Classify an input ${\sf x}$ according to which center of mass it is closest to.

Let's express this as a linear classifier!

See page 21-22 in the textbook

Closest centroid classifier

Our hyperplane is going be perpendicular to the vector that connects the two centers of mass. Therefore:

$$\mathbf{w} = \boldsymbol{\mu}^{(+)} - \boldsymbol{\mu}^{(-)}$$

Closest centroid classifier

To find the bias term we use the fact that the midpoint between the means is on the hyperplane, i.e.

$$\mathbf{w} \cdot \frac{(\boldsymbol{\mu}^{(+)} + \boldsymbol{\mu}^{(-)})}{2} + b = 0$$

Closest centroid classifier

With a little algebra: $b=-rac{1}{2}(oldsymbol{\mu}^{(+)}-oldsymbol{\mu}^{(-)})(oldsymbol{\mu}^{(+)}+oldsymbol{\mu}^{(-)})$

The norm of a vector: $=-\frac{1}{2}(||\boldsymbol{\mu}^{(+)}||^2-||\boldsymbol{\mu}^{(-)}||^2)$ $||\mathbf{x}||^2=\mathbf{x}\cdot\mathbf{x}$

Linearly separable data

Linearly separable data: there exists a linear decision boundary separating the classes.

Example:

The bias and homogeneous coordinates

In some cases we will use algorithms that learn a discriminant function without a bias term. This does not reduce the expressivity of the model because we can obtain a bias using the following trick:

Add another dimension \mathbf{x}_0 to each input and set it to 1. Learn a weight vector of dimension d+1 in this extended space, and interpret \mathbf{w}_0 as the bias term. With the notation

$$\mathbf{w} = (w_1, \dots, w_d) \quad \tilde{\mathbf{w}} = (w_0, w_1, \dots, w_d)$$
$$\tilde{\mathbf{x}} = (1, x_1, \dots, x_d)$$

We have that:

$$\tilde{\mathbf{w}} \cdot \tilde{\mathbf{x}} = w_0 + \mathbf{w} \cdot \mathbf{x}$$

See page 4 in the book

The perceptron algorithm

If x_i is a negative example, the update needs to be opposite. Overall, we can summarize the two cases as:

$$\mathbf{w}' = \mathbf{w} + \eta y_i \mathbf{x}_i$$

```
Input: labeled data D in homogeneous coordinates
Output: weight vector w

w = 0
converged = false
while not converged :
    converged = true
    for i in 1,..., |D| :
        if x<sub>i</sub> is misclassified update w and set
        converged=false
```

The perceptron algorithm

Idea: iterate over the training examples, and update the weight vector \mathbf{w} such that \mathbf{x}_i is more likely to be correctly classified.

Let's assume that \mathbf{x}_i is misclassified, and is a positive example i.e.

$$\mathbf{w} \cdot \mathbf{x}_i < 0$$

Note: we're learning a classifier without a bias term

We would like to update w to w' such that

$$\mathbf{w}' \cdot \mathbf{x}_i > \mathbf{w} \cdot \mathbf{x}_i$$

This can be achieved by choosing

$$\mathbf{w}' = \mathbf{w} + \eta \mathbf{x}_i$$

Where $0 < \eta \le 1$ is the learning rate

Section 7.2 in the book

The perceptron algorithm

The algorithm makes sense, but let's try to derive in a more principled way.

The algorithm is trying to find a vector **w** that separates positive from negative examples.

We can express that as:

$$y_i \mathbf{w}^\mathsf{T} \mathbf{x}_i > 0, \quad i = 1, \dots, n$$

For a given weight vector \mathbf{w} the degree to which this does not hold can be expressed as:

$$E(\mathbf{w}) = -\sum_{i=1,\dots,n} y_i \mathbf{w}^{\mathsf{T}} \mathbf{x}_i$$

We want to find w that minimizes or maximizes this criterion?

Digression: gradient descent

Given a function $\mathsf{E}(\mathbf{w})$, the gradient is the direction of steepest ascent

Therefore to minimize $E(\mathbf{w})$, take a step in the direction of the negative of the gradient

Notice that the gradient is perpendicular to contours of equal E(w)

Images from http://en.wikipedia.org/wiki/Gradient_descent

Gradient descent

We can now express gradient descent as:

$$\mathbf{w}(t+1) = \mathbf{w}(t) - \eta \nabla E(\mathbf{w})$$
$$\mathbf{w}(t) - \eta \frac{\partial E(\mathbf{w})}{\partial \mathbf{w}}$$

where

$$\frac{\partial E(\mathbf{w})}{\partial \mathbf{w}} = \left(\frac{\partial E(\mathbf{w})}{\partial w_1}, \dots, \frac{\partial E(\mathbf{w})}{\partial w_d}\right)^{\mathsf{T}}$$

And w(t) is the weight vector at iteration t

The constant η is called the step size (learning rate when used in the context of machine learning).

The perceptron algorithm

Let's apply gradient descent to the perceptron criterion:

$$E(\mathbf{w}) = -\sum_{i: \ \mathbf{x}_i \ \text{is misclassified}} y_i \mathbf{w}^\intercal \mathbf{x}_i$$

$$\frac{\partial E(\mathbf{w})}{\partial \mathbf{w}} = -\sum_{i: \ \mathbf{x}_i \ \text{is misclassified}} y_i \mathbf{x}_i$$

$$\mathbf{w}(t+1) = \mathbf{w}(t) - \eta \frac{\partial E(\mathbf{w})}{\partial \mathbf{w}}$$
$$= \mathbf{w}(t) + \eta \sum_{i: \mathbf{x}_i \text{ is misclassified}} y_i \mathbf{x}_i$$

Which is exactly the perceptron algorithm!

The perceptron algorithm

The algorithm is guaranteed to converge if the data is linearly separable, and does not converge otherwise.

Issues with the algorithm:

- The algorithm chooses an arbitrary hyperplane that separates the two classes. It may not be the best one from the learning perspective.
- Does not converge if the data is not separable (can halt after a fixed number of iterations).

There are variants of the algorithm that address these issues (to some extent).

2.

Perceptron for regression

Replace the update equation with:

$$\mathbf{w}' = \mathbf{w} + \eta (y_i - \hat{y}_i)^2 \mathbf{x}_i$$

Training epoch - one complete run through the training data

_