Linear models and the perceptron algorithm

Chapters 1, 3

Preliminaries

Definition: The Euclidean dot product between two vectors is the expression d

$$\mathbf{w}^T \mathbf{x} = \sum_{i=1}^d w_i x_i$$

The dot product is also referred to as inner product or scalar product.

It is sometimes denoted as $\mathbf{W} \cdot \mathbf{X}$ (hence the name dot product).

Preliminaries

Definition: The Euclidean dot product between two vectors is

$$\mathbf{w}^T \mathbf{x} = \sum_{i=1}^{d} w_i x_i$$

The dot product is also referred to as inner product or scalar product.

Geometric interpretation. The dot product between two unit vectors $\!^1\!$ is the cosine of the angle between them.

IAI cosθ

The dot product between a vector and a unit vector is the length of its projection in that direction.

And in general:

$$\mathbf{w}^{\mathsf{T}}\mathbf{x} = ||\mathbf{w}|| \cdot ||\mathbf{x}|| \cos(\theta)$$

$$||\mathbf{x}||^2 = \mathbf{x}^\intercal \mathbf{x}$$

From linear to non-linear

There is a neat mathematical trick that will enable us to use linear classifiers to create non-linear decision boundaries!

From linear to non-linear From linear to non-linear Original data: not linearly separable Transformed data: $(x,y) = (x^2,y^2)$

The bias and homogeneous coordinates

In some cases we will use algorithms that learn a discriminant function without a bias term. This does not reduce the expressivity of the model because we can obtain a bias using the following trick:

Add another dimension \mathbf{x}_0 to each input and set it to 1. Learn a weight vector of dimension d+1 in this extended space, and interpret \mathbf{w}_0 as the bias term. With the notation

$$\mathbf{w} = (w_1, \dots, w_d) \quad \tilde{\mathbf{w}} = (w_0, w_1, \dots, w_d)$$
$$\tilde{\mathbf{x}} = (1, x_1, \dots, x_d)$$

\4/= la acca dela ade

$$\tilde{\mathbf{w}} \cdot \tilde{\mathbf{x}} = w_0 + \mathbf{w} \cdot \mathbf{x}$$

See page 7 in the book

Finding a good hyperplane

We would like a classifier that fits the data, i.e. we would like to find a vector withat minimizes

$$E_{\text{in}}(h) = \frac{1}{n} \sum_{i=1}^{n} \mathbb{1} \left[h(\mathbf{x}_i) \neq f(\mathbf{x}_i) \right]$$
$$= \frac{1}{n} \sum_{i=1}^{n} \mathbb{1} \left[\text{sign}(\mathbf{w}^{\mathsf{T}} \mathbf{x}_i) \neq y_i \right]$$

This is a difficult problem because of the discrete nature of the indicator and sign function (known to be NP-hard).

The perceptron algorithm (Rosenblatt, 1957)

 $\label{eq:local_local} \textbf{Idea}: iterate over the training examples, and update the weight vector <math display="inline">\mathbf{w}$ in a way that would make \mathbf{x}_i is more likely to be correctly classified.

Let's assume that \mathbf{x}_i is misclassified, and is a positive example

 $\mathbf{w}\cdot\mathbf{x}_i<0\qquad \begin{array}{c} \text{Note: we re learning a classiful without a bias term} \\ \text{We would like to update w to w' such that} \end{array}$

 $\mathbf{w}' \cdot \mathbf{x}_i > \mathbf{w} \cdot \mathbf{x}_i$

This can be achieved by choosing

 $\mathbf{w}' = \mathbf{w} + \eta \mathbf{x}_i$

 $0<\eta\leq 1$ is the learning rate

The perceptron algorithm

If \mathbf{x}_i is a negative example, the update needs to be opposite. Overall, we can summarize the two cases as:

$$\mathbf{w}' = \mathbf{w} + \eta y_i \mathbf{x}_i$$

The perceptron algorithm

Since the algorithm is not guaranteed to converge you need to set a limit on the number of iterations:

The perceptron algorithm

The algorithm makes sense, but let's try to derive it in a more principled way

The algorithm is trying to find a vector **w** that separates positive from negative examples.

We can express that as:

$$y_i \mathbf{w}^\intercal \mathbf{x}_i > 0, \quad i = 1, \dots, n$$

For a given weight vector \mathbf{w} the degree to which this does not hold can be expressed as:

$$E(\mathbf{w}) = -\sum_{i: \ \mathbf{x}_i \ \text{is misclassified}} y_i \mathbf{w}^\intercal \mathbf{x}_i$$

We want to find w that minimizes or maximizes this criterion?

Digression: gradient descent Given a function E(w), the gradient is the direction of steepest ascent Therefore to minimize E(w), take a step in the direction of the negative of the gradient

Notice that the gradient is perpendicular to contours of equal E(w)

Images from http://en,wikipedia.org/wiki/Gradient_descent

Gradient descent

We can now express gradient descent as:

$$\begin{aligned} \mathbf{w}(t+1) &= \mathbf{w}(t) - \eta \nabla E(\mathbf{w}) \\ \mathbf{w}(t) &- \eta \frac{\partial E(\mathbf{w})}{\partial \mathbf{w}} \end{aligned}$$

where

$$\frac{\partial E(\mathbf{w})}{\partial \mathbf{w}} = \left(\frac{\partial E(\mathbf{w})}{\partial w_1}, \dots, \frac{\partial E(\mathbf{w})}{\partial w_d}\right)$$

And $\mathbf{w}(t)$ is the weight vector at iteration t

The constant η is called the step size (learning rate when used in the context of machine learning).

The perceptron algorithm

Let's apply gradient descent to the perceptron criterion:

$$E(\mathbf{w}) = -\sum_{i: \ \mathbf{x}_i \ \text{is misclassified}} y_i \mathbf{w}^\intercal \mathbf{x}_i$$

$$\frac{\partial E(\mathbf{w})}{\partial \mathbf{w}} = -\sum_{i: \ \mathbf{x}_i \ \text{is misclassified}} y_i \mathbf{x}_i$$

$$\begin{aligned} \mathbf{w}(t+1) &= \mathbf{w}(t) - \eta \frac{\partial E(\mathbf{w})}{\partial \mathbf{w}} \\ &= \mathbf{w}(t) + \eta \sum_{i: \ \mathbf{x}_i \ \text{is misclassified}} y_i \mathbf{x}_i \end{aligned}$$

Which is exactly the perceptron algorithm!

The perceptron algorithm

The algorithm is guaranteed to converge if the data is linearly separable, and does not converge otherwise.

Issues with the algorithm:

- The algorithm chooses an arbitrary hyperplane that separates the two classes. It may not be the best one from the learning perspective.
- Does not converge if the data is not separable (can halt after a fixed number of iterations).

There are variants of the algorithm that address these issues (to some extent).

Input: labeled data D in homogeneous coordinates Output: a weight vector w w = 0, wpocket = 0 converged = false while (not converged or number of iterations < T): converged = true for i in 1,..., |D|: if x_i is misclassified: update w and set converged=false if w leads to better E_in than wpocket: wpocket = w return wpocket Gallant, S. I. (1990) Perceptron-based learning algorithms. IEEE Transactions on Neural Networks, vol. 1, no. 2, pp. 179-191.

