
8/27/15

1

w

wTx + b < 0

wTx + b > 0

Linear models and the perceptron
algorithm

Chapters 1, 3

1

Preliminaries

Definition: The Euclidean dot product between two vectors is
the expression

The dot product is also referred to as inner product or scalar
product.
It is sometimes denoted as
(hence the name dot product).

2

w

T
x =

dX

i=1

wixi

w · x

Preliminaries

Definition: The Euclidean dot product between two vectors is
the expression

The dot product is also referred to as inner product or scalar
product.

Geometric interpretation. The dot product between two unit
vectors1 is the cosine of the angle between them.
The dot product between a vector and a unit vector is the
length of its projection in that direction.
And in general:

3

w

T
x =

dX

i=1

wixi

w

|
x = ||w|| · ||x||cos(✓)

The norm of a vector:

||x||2 = x

|
x

Labeled data

A labeled dataset:

Where are d-dimensional vectors

The labels:

are discrete for classification
problems (e.g. +1, -1) for binary
classification

4

D = {(xi, yi)}ni=1

xi 2 Rd

Labeled data

A labeled dataset:

Where are d-dimensional vectors

The labels:

are continuous values for a
regression problem

5

D = {(xi, yi)}ni=1

xi 2 Rd

Linear models

Linear models for classification
(linear decision boundaries)

Linear models for regression
(estimating a linear function)

6

w

wTx + b < 0

wTx + b > 0

140 150 160 170 180 190 200
40

45

50

55

60

65

70

75

80

85

90

8/27/15

2

Linear models for classification

7

w

wTx + b < 0

wTx + b > 0

Discriminant/scoring function:

weight vector bias

f(x) = w

|
x+ b

Linear models for classification

8

w

wTx + b < 0

wTx + b > 0

Decision boundary:

 all x such that

For linear models the the decision boundary is a line in 2-d, a plane
in 3-d and a hyperplane in higher dimensions

f(x) = w

|
x+ b = 0

Linear models for classification

9

w

wTx + b < 0

wTx + b > 0

Using the discriminant to
make a prediction:

the sign function equals 1 when its argument is positive and -1 otherwise

ŷ = sign(w|
x+ b)

Linear models for classification

10

w

wTx + b < 0

wTx + b > 0

Decision boundary:
 all x such that

What can you say about the decision boundary when b = 0?

f(x) = w

|
x+ b = 0

Linear models for regression

When using a linear model for regression the scoring function is
the prediction:

11

ŷ = w

|
x+ bLeast Squares Linear Regression

x

y

x1 x2

y

y = f(x) + ε ←− noisy target P (y|x)

in-sample error Ein(h) =
1
N

N∑

n=1
(h(xn)− yn)2

out-of-sample error Eout(h) = Ex[(h(x)− y)2]












h(x) = wtx

c© AML Creator: Malik Magdon-Ismail Linear Classification and Regression: 16 /21 Matrix representation −→

Why linear?

q  It’s a good baseline: always start simple
q  Linear models are stable
q  Linear models are less likely to overfit the training

data because they have relatively less parameters.
Can sometimes underfit. Often all you need when
the data is high dimensional.

q  Lots of scalable algorithms

12

8/27/15

3

From linear to non-linear

13

There is a neat mathematical trick that will enable us to use linear
classifiers to create non-linear decision boundaries!

From linear to non-linear

−2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

14

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Original data: not linearly separable Transformed data: (x’,y’) = (x2, y2)

Linearly separable data

Linearly separable data: there exists a linear
decision boundary separating the classes.

Example:

15

w

wTx + b < 0

wTx + b > 0

The bias and homogeneous coordinates

In some cases we will use algorithms that learn a discriminant
function without a bias term. This does not reduce the
expressivity of the model because we can obtain a bias using the
following trick:

Add another dimension x0 to each input and set it to 1.
Learn a weight vector of dimension d+1 in this extended space,
and interpret w0 as the bias term. With the notation

We have that:

16

w̃ · x̃ = w0 +w · x

w̃ = (w0, w1, . . . , wd)w = (w1, . . . , wd)

x̃ = (1, x1, . . . , xd)

See page 7 in the book

Finding a good hyperplane

We would like a classifier that fits the data, i.e. we would like to
find a vector w that minimizes

This is a difficult problem because of the discrete nature of
the indicator and sign function (known to be NP-hard).

17

=
1

n

nX

i=1

[sign(w|
xi) 6= yi]

Ein(h) =
1

n

nX

i=1

[h(xi) 6= f(xi)]

How to Learn a Final Hypothesis g from H

We want to select g ∈ H so that g ≈ f .

We certainly want g ≈ f on the data set D. Ideally,

g(xn) = yn.

How do we find such a g in the infinite hypothesis set H, if it exists?

Idea! Start with some weight vector and try to improve it.

Age

In
co

m
e

c© AML Creator: Malik Magdon-Ismail The Perceptron: 10 /25 PLA −→

The perceptron algorithm (Rosenblatt, 1957)

Idea: iterate over the training examples, and update the weight
vector w in a way that would make xi is more likely to be
correctly classified.
Let’s assume that xi is misclassified, and is a positive example
i.e.

We would like to update w to w’ such that

This can be achieved by choosing

 is the learning rate

18

w

0 · xi > w · xi

w

0 = w + ⌘xi

0 < ⌘  1

w · xi < 0 Note: we’re learning a classifier
without a bias term

Section 1.1 in the book
Rosenblatt, Frank (1957), The Perceptron--a perceiving and recognizing automaton.
Report 85-460-1, Cornell Aeronautical Laboratory.

8/27/15

4

The perceptron algorithm

If xi is a negative example, the update needs to be opposite.
Overall, we can summarize the two cases as:

19

w

0 = w + ⌘yixi

Input: labeled data D in homogeneous coordinates
Output: weight vector w

w = 0
converged = false
while not converged :
 converged = true
 for i in 1,…,|D| :
 if xi is misclassified update w and set
 converged=false
return w

The perceptron algorithm

Since the algorithm is not guaranteed to converge you need to
set a limit on the number of iterations:

20

Input: labeled data D in homogeneous coordinates
Output: weight vector w

w = 0
converged = false
while (not converged or number of iterations < T) :
 converged = true
 for i in 1,…,|D| :
 if xi is misclassified:

 update w and set converged=false
return w

The perceptron algorithm

The algorithm makes sense, but let’s try to derive it in a more
principled way.
The algorithm is trying to find a vector w that separates
positive from negative examples.
We can express that as:

For a given weight vector w the degree to which this does not
hold can be expressed as:

We want to find w that minimizes or maximizes this criterion?

21

yiw
|
xi > 0, i = 1, . . . , n

E(w) = �
X

i: xi is misclassified

yiw
|
xi

Digression: gradient descent

22 Images from http://en.wikipedia.org/wiki/Gradient_descent

Given a function E(w), the gradient is the direction of
steepest ascent
Therefore to minimize E(w), take a step in the direction of the
negative of the gradient

Notice that the gradient is perpendicular
to contours of equal E(w)

Gradient descent

We can now express gradient descent as:

where

And w(t) is the weight vector at iteration t

The constant η is called the step size (learning rate when used
in the context of machine learning).

23

w(t+ 1) = w(t)� ⌘rE(w)

w(t)� ⌘
@E(w)

@w

@E(w)

@w
=

✓
@E(w)

@w1
, . . . ,

@E(w)

@wd

◆|

The perceptron algorithm

Let’s apply gradient descent to the perceptron criterion:

Which is exactly the perceptron algorithm!

24

E(w) = �
X

i: xi is misclassified

yiw
|
xi

@E(w)

@w
= �

X

i: xi is misclassified

yixi

w(t+ 1) = w(t)� ⌘
@E(w)

@w

= w(t) + ⌘
X

i: xi is misclassified

yixi

8/27/15

5

The perceptron algorithm

The algorithm is guaranteed to converge if the data is linearly
separable, and does not converge otherwise.

Issues with the algorithm:

q  The algorithm chooses an arbitrary hyperplane that

separates the two classes. It may not be the best one from
the learning perspective.

q  Does not converge if the data is not separable (can halt after
a fixed number of iterations).

There are variants of the algorithm that address these issues
(to some extent).

25

The pocket algorithm

26

Input: labeled data D in homogeneous coordinates
Output: a weight vector w

w = 0, wpocket = 0
converged = false
while (not converged or number of iterations < T) :
 converged = true
 for i in 1,…,|D| :
 if xi is misclassified:

 update w and set converged=false
 if w leads to better Ein than wpocket :
 wpocket = w

return wpocket

Gallant, S. I. (1990). Perceptron-based learning algorithms. IEEE Transactions on
Neural Networks, vol. 1, no. 2, pp. 179–191.

Image classification
Features: important properties of the input you think are
relevant for classification

In this case we consider the level of symmetry (image – its
flipped version) and overall intensity (fraction of pixels that are
dark)

27

Intensity and Symmetry Features

feature: an important property of the input that you think is useful for classification.
(dictionary.com: a prominent or conspicuous part or characteristic)

x = (1, x1, x2) ← input
w = (w0, w1, w2) ← linear model

}

dvc = 3

c© AML Creator: Malik Magdon-Ismail Linear Classification and Regression: 12 /21 PLA on digits data −→

Intensity and Symmetry Features

feature: an important property of the input that you think is useful for classification.
(dictionary.com: a prominent or conspicuous part or characteristic)

x = (1, x1, x2) ← input
w = (w0, w1, w2) ← linear model

}

dvc = 3

c© AML Creator: Malik Magdon-Ismail Linear Classification and Regression: 12 /21 PLA on digits data −→

Pocket vs perceptron
Comparison on image data: distinguishing between the digits “1”
and “5” (see page 83 in the book):

28

Pocket on Digits Data

PLA

Iteration Number, t

E
rr
or

(l
og

sc
al
e)

Eout

Ein

0 250 500 750 1000

1%

10%

50%

Pocket

Iteration Number, t

E
rr
or

(l
og

sc
al
e)

Eout

Ein

0 250 500 750 1000

1%

10%

50%

c© AML Creator: Malik Magdon-Ismail Linear Classification and Regression: 14 /21 Regression −→

