Linear models: Linear regression

Chapter 3.2
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Least squares linear regression
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Note: there is no explicit bias, so introduce it via an additional
feature



Least squares linear regression

Goal: the predicted values be as close as possible to the labels.
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Bn(h) = 5 > (h(xi) =) = 1 Y (Whx — 1)

Training: Find w that minimize this cost function

The discrepancy between predictions and labels is measured
using a loss function. Here we used the squared-error loss:
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data matrix, N x (d+ 1)
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Expressing E;, in matrix form
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Gradients and vector differentiation

The gradient of a scalar function f(w) denoted by Vf(w)

is the vector <af(W) 8f(W) ) T
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We will also denote it as (9f(w)
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The requirement that the gradient be a column vector implies:
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Recall that a necessary (and not sufficient) condition for an
extremum of a function f(w) is:
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Solving for the weight vector

Let's do some algebra before taking the derivative:
(y = Xw)T(y — Xw) = (y7 — (Xw)T)(y — Xw)
= (yTy —wTXT)(y — Xw)
=—yy—y' Xw—-—wXTy+wlXTXw

i(y — Xw)T(y —Xw) = —(yTX)T = XT + XTXw + (W XTX)T

9 ) = 2 (xTw) — x = 2XTy 4+ 2XTXw = 0
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Now we get that w satisfies: XTXw = XTy

and w=(XTX) 'XTy

pseudo-inverse



Probability theory digression

Random variable: the outcome of a random process
Examples: the possible outcomes of rolling a die: {1,2,3,4,5,6}

The expected value of a random variable X:
E(X) =) aP(x)
X

(for a continuous variable replace sum with integral)
The empirical estimate for the expectation:
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Probability theory digression

The spread of a distribution around the expected value is its
variance, defined by:

0% =E [(X _ ]E(X))Z} —E[X?] - E[X]’
The sample variance is:
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The covariance between two variables X and Y:
oxy = E[(X —E(X)) (Y —E(Y))| =E[X Y] -E[X]E[Y]

The sample covariance:
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Correlation between variables
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The Pearson correlation between two variables is defined as:
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It varies between -1 and 1

Figure from http://en.wikipedia.org/wiki/Correlation_and_dependence



More insight into the solution

Let's compare the general solution
w = (XTX) 'XTy

With the solution to the one dimensional case (assume data is
centered, i.e. has zero-mean):
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w =

Intuition: if X and Y are weakly correlated, the slope will be
small
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More insight into the solution

Let's compare the general solution
w = (XTX) 'XTy
With the solution to the one dimensional case:
OXY

5
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w =

And the special case of two dimensions:

1 0500 — 0190
2201 1202

(0’110‘22 — 0'%2) 01102y — 01201y
What do we observe when x; and x, are uncorrelated?

Also notice that w; may be nonzero even if x; is uncorrelated

with the target variable.
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Linear regression for classification

You can use linear regression for binary classification problems.
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Sensitivity to outliers

Magenta: solution from least-squares
Green: logistic regression
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Do I have to invert that matrix?

In order to compute w you don't necessarily need to do it as:
w = (XTX)'XTy
Instead, you can solve for w as in:
XTXw = XTy

And, in python

import numpy as np

W

= np.dot (np.linalg.inv (np.dot (X.T, X)), np.dot(X.T,vy))

or, using the faster and more numerically stable solve function:

import numpy as np

W

= np.linalg.solve (np.dot (X.T,X), np.dot(X.T, vy))
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Interpreting the weight vector
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Which component of the weight vector is larger?

Which variable is more relevant for the classification task?
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Interpreting the weight vector
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It is common practice to use the magnitude of weight vector
components as an indicator of the importance of a feature.

Caveat: data needs to be normalized!



Interpreting the weight vector

The weight vector for the “heart” dataset:

array([-0.07006162, 0.15838763, 0.28357296, 0.20753778,
0.23265869, -0.08271229, 0.08011837,-0.3363789 ,
0.11753745, 0.25560924, 0.09984765, 0.40073063,
0.23961789])

In the case of a binary classification problem, what is the relevance
of the sign of w;?
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Generalization

What can we say about E_; having minimized E;?

E|Eou(h)] = E[En(h)] + O (%

See section 3.2.2 and exercise 3.4 for details.

)

18



Measuring regression accuracy

Root Mean Square Error (RMSE):

1 N 2
RMSE(h) = \ ~ ; (h(x;) — i)

1=1

Compute the RMSE on a test set

Another common measure of error is the Mean Absolute
Deviation (MAD):
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MAD(h) = % Z yi — h(xi)]
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