Linear models: Linear regression

Chapter 3.2

Least squares linear regression

$E_{\mathrm{in}}(h)=\frac{1}{N} \sum_{i=1}^{N}\left(h\left(\mathbf{x}_{i}\right)-y_{i}\right)^{2}=\frac{1}{N} \sum_{i=1}^{N}\left(\mathbf{w}^{\top} \mathbf{x}-y_{i}\right)^{2}$
Note: there is no explicit bias, so introduce it via an additional feature

Least squares linear regression

Goal: the predicted values be as close as possible to the labels.

$$
E_{\mathrm{in}}(h)=\frac{1}{N} \sum_{i=1}^{N}\left(h\left(\mathbf{x}_{i}\right)-y_{i}\right)^{2}=\frac{1}{N} \sum_{i=1}^{N}\left(\mathbf{w}^{\top} \mathbf{x}-y_{i}\right)^{2}
$$

Training: Find w that minimize this cost function

The discrepancy between predictions and labels is measured using a loss function. Here we used the squared-error loss:

$$
L(y, \hat{y})=(y-\hat{y})^{2}
$$

Expressing $\mathrm{E}_{\text {in }}$ in matrix form

$\mathrm{X}=\left[\begin{array}{c}-\mathbf{x}_{1}- \\ -\mathbf{x}_{2} \\ \vdots \\ -\mathbf{x}_{N}-\end{array}\right]$
$\mathbf{y}=\left[\begin{array}{c}y_{1} \\ y_{2} \\ \vdots \\ y_{N}\end{array}\right]$
$\hat{\mathbf{y}}=\left[\begin{array}{c}\hat{y}_{1} \\ \hat{y}_{2} \\ \vdots \\ \hat{y}_{N}\end{array}\right]=\left[\begin{array}{c}\mathbf{w}^{\mathrm{T}} \mathbf{x}_{1} \\ \mathbf{w}^{\mathrm{T}} \mathbf{x}_{2} \\ \vdots \\ \mathbf{w}^{\top} \mathbf{x}_{N}\end{array}\right]=\mathbf{X} \mathbf{w}$
data matrix, $N \times(d+1)$

in-sample predictions

$$
\begin{aligned}
E_{\text {in }}(\mathbf{w}) & =\frac{1}{N} \sum_{n=1}^{N}\left(\hat{y}_{n}-y_{n}\right)^{2} \\
& =\frac{1}{N}\|\hat{\mathbf{y}}-\mathbf{y}\|_{2}^{2} \\
& =\frac{1}{N}\|\mathrm{X} \mathbf{w}-\mathbf{y}\|_{2}^{2} \\
& =\frac{1}{N}\left(\mathbf{w}^{\mathrm{T}} X^{\mathrm{T}} \mathrm{X} \mathbf{w}-2 \mathbf{w}^{\mathrm{T}} X^{\mathrm{T}} \mathbf{y}+\mathbf{y}^{\mathrm{T}} \mathbf{y}\right)
\end{aligned}
$$

Gradients and vector differentiation

The gradient of a scalar function $\mathrm{f}(\mathbf{w})$ denoted by $\nabla f(\mathbf{w})$
is the vector

$$
\left(\frac{\partial f(\mathbf{w})}{\partial w_{1}}, \ldots, \frac{\partial f(\mathbf{w})}{\partial w_{d}}\right)^{\top}
$$

We will also denote it as $\frac{\partial f(\mathbf{w})}{\partial \mathbf{w}}$
The requirement that the gradient be a column vector implies:

$$
\frac{\partial}{\partial \mathbf{w}}\left(\mathbf{w}^{\top} \mathbf{x}\right)=\frac{\partial}{\partial \mathbf{w}}\left(\mathbf{x}^{\top} \mathbf{w}\right)=\mathbf{x}
$$

Recall that a necessary (and not sufficient) condition for an extremum of a function $f(w)$ is:

$$
\frac{\partial f(\mathbf{w})}{\partial \mathbf{w}}=0
$$

Solving for the weight vector

Let's do some algebra before taking the derivative:

$$
\begin{aligned}
(\mathbf{y}-\mathbf{X} \mathbf{w})^{\top}(\mathbf{y}-\mathbf{X} \mathbf{w}) & =\left(\mathbf{y}^{\top}-(\mathbf{X} \mathbf{w})^{\top}\right)(\mathbf{y}-\mathbf{X} \mathbf{w}) \\
& =\left(\mathbf{y}^{\top} \mathbf{y}-\mathbf{w}^{\top} \mathbf{X}^{\top}\right)(\mathbf{y}-\mathbf{X} \mathbf{w}) \\
& =\mathbf{y}^{\top} \mathbf{y}-\mathbf{y}^{\top} \mathbf{X} \mathbf{w}-\mathbf{w}^{\top} \mathbf{X}^{\top} \mathbf{y}+\mathbf{w}^{\top} \mathbf{X}^{\top} \mathbf{X} \mathbf{w}
\end{aligned}
$$

$$
\begin{aligned}
\frac{\partial}{\partial \mathbf{w}}(\mathbf{y}-\mathbf{X} \mathbf{w})^{\top}(\mathbf{y}-\mathbf{X} \mathbf{w}) & =-\left(\mathbf{y}^{\top} \mathbf{X}\right)^{\top}-\mathbf{X}^{\top}+\mathbf{X}^{\top} \mathbf{X} \mathbf{w}+\left(\mathbf{w}^{\top} \mathbf{X}^{\top} \mathbf{X}\right)^{\top} \\
\frac{\partial}{\partial \mathbf{w}}\left(\mathbf{w}^{\top} \mathbf{x}\right)=\frac{\partial}{\partial \mathbf{w}}\left(\mathbf{x}^{\top} \mathbf{w}\right)=\mathbf{x} & =-2 \mathbf{X}^{\top} \mathbf{y}+2 \mathbf{X}^{\top} \mathbf{X} \mathbf{w}=0
\end{aligned}
$$

Now we get that w satisfies: $\quad \mathbf{X}^{\top} \mathbf{X} \mathbf{w}=\mathbf{X}^{\top} \mathbf{y}$
and

$$
\mathbf{W}=\left(\mathbf{X}^{\top} \mathbf{X}\right)^{-1} \mathbf{X}^{\top} \mathbf{y}
$$

pseudo-inverse

Probability theory digression

Random variable: the outcome of a random process
Examples: the possible outcomes of rolling a die: $\{1,2,3,4,5,6\}$

The expected value of a random variable X :

$$
\mathbb{E}(X)=\sum_{x} x P(x)
$$

(for a continuous variable replace sum with integral)
The empirical estimate for the expectation:

$$
\bar{x}=\frac{1}{n} \sum_{i=1}^{n} x_{i}
$$

Probability theory digression

The spread of a distribution around the expected value is its variance, defined by:

$$
\sigma_{X}^{2}=\mathbb{E}\left[(X-\mathbb{E}(X))^{2}\right]=\mathbb{E}\left[X^{2}\right]-\mathbb{E}[X]^{2}
$$

The sample variance is:

$$
\frac{1}{n} \sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}
$$

The covariance between two variables X and Y :

$$
\sigma_{X Y}=\mathbb{E}[(X-\mathbb{E}(X))(Y-\mathbb{E}(Y))]=\mathbb{E}[X \cdot Y]-\mathbb{E}[X] \mathbb{E}[Y]
$$

The sample covariance:

$$
\frac{1}{n} \sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right)=\frac{1}{n} \sum_{i=1}^{n} x_{i} y_{i}-\bar{x} \bar{y}
$$

Correlation between variables

1

1

1

The Pearson correlation between two variables is defined as:

$$
r_{X Y}=\frac{\sigma_{X Y}}{\sigma_{X} \sigma_{Y}}
$$

It varies between -1 and 1

Figure from http://en.wikipedia.org/wiki/Correlation_and_dependence

More insight into the solution

Let's compare the general solution

$$
\mathbf{w}=\left(\mathbf{X}^{\top} \mathbf{X}\right)^{-1} \mathbf{X}^{\top} \mathbf{y}
$$

With the solution to the one dimensional case (assume data is centered, i.e. has zero-mean):

$$
w=\frac{\sigma_{X Y}}{\sigma_{X X}^{2}}
$$

Intuition: if X and Y are weakly correlated, the slope will be small

More insight into the solution

Let's compare the general solution

$$
\mathbf{w}=\left(\mathbf{X}^{\top} \mathbf{X}\right)^{-1} \mathbf{X}^{\top} \mathbf{y}
$$

With the solution to the one dimensional case:

$$
w=\frac{\sigma_{X Y}}{\sigma_{X X}^{2}}
$$

And the special case of two dimensions:

$$
\mathbf{w}=\frac{1}{\left(\sigma_{11} \sigma_{22}-\sigma_{12}^{2}\right)}\left[\begin{array}{l}
\sigma_{22} \sigma_{1 y}-\sigma_{12} \sigma_{2 y} \\
\sigma_{11} \sigma_{2 y}-\sigma_{12} \sigma_{1 y}
\end{array}\right]
$$

What do we observe when x_{1} and x_{2} are uncorrelated?
Also notice that w_{1} may be nonzero even if x_{1} is uncorrelated with the target variable.

Linear regression for classification

You can use linear regression for binary classification problems.

Average Intensity

Sensitivity to outliers

Magenta: solution from least-squares
Green: logistic regression

Do I have to invert that matrix?

In order to compute \mathbf{w} you don't necessarily need to do it as:

$$
\mathbf{w}=\left(\mathbf{X}^{\top} \mathbf{X}\right)^{-1} \mathbf{X}^{\top} \mathbf{y}
$$

Instead, you can solve for w as in:

$$
\mathbf{X}^{\top} \mathbf{X} \mathbf{w}=\mathbf{X}^{\top} \mathbf{y}
$$

And, in python

```
import numpy as np
w = np.dot(np.linalg.inv(np.dot(X.T, X)), np.dot(X.T,y))
```

or, using the faster and more numerically stable solve function:

```
import numpy as np
w = np.linalg.solve(np.dot(X.T,X), np.dot(X.T, Y))
```


Interpreting the weight vector

Which component of the weight vector is larger?
Which variable is more relevant for the classification task?

Interpreting the weight vector

It is common practice to use the magnitude of weight vector components as an indicator of the importance of a feature.

Caveat: data needs to be normalized!

Interpreting the weight vector

The weight vector for the "heart" dataset:
$\operatorname{array}([-0.07006162,0.15838763,0.28357296,0.20753778$, $0.23265869,-0.08271229,0.08011837,-0.3363789$, $0.11753745,0.25560924,0.09984765,0.40073063$, $0.23961789]$)

In the case of a binary classification problem, what is the relevance of the sign of w_{i} ?

Generalization

What can we say about $\mathrm{E}_{\text {out }}$ having minimized $\mathrm{E}_{\text {in }}$?

$$
\mathbb{E}\left[E_{\text {out }}(h)\right]=\mathbb{E}\left[E_{\text {in }}(h)\right]+O\left(\frac{d}{N}\right)
$$

See section 3.2.2 and exercise 3.4 for details.

Measuring regression accuracy

Root Mean Square Error (RMSE):

$$
\operatorname{RMSE}(h)=\sqrt{\frac{1}{N} \sum_{i=1}^{N}\left(h\left(\mathbf{x}_{i}\right)-y_{i}\right)^{2}}
$$

Compute the RMSE on a test set

Another common measure of error is the Mean Absolute Deviation (MAD):

$$
M A D(h)=\frac{1}{N} \sum_{i=1}^{N}\left|y_{i}-h\left(\mathbf{x}_{i}\right)\right|
$$

