
Linear models:  Linear regression 

Chapter 3.2 
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Least Squares Linear Regression
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y = f(x) + ϵ ←− noisy target P (y|x)

in-sample error Ein(h) =
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(h(xn)− yn)2
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h(x) = wtx
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Least squares linear regression 

Note:  there is no explicit bias, so introduce it via an additional 
feature 
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Least squares linear regression 

Goal: the predicted values be as close as possible to the labels.   
 
 
 
Training:  Find w that minimize this cost function 
 
The discrepancy between predictions and labels is measured 
using a loss function.  Here we used the squared-error loss: 
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L(y, ŷ) = (y � ŷ)2
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Expressing Ein in matrix form 

a 
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Using Matrices for Linear Regression

X =

⎡

⎢
⎢
⎣

—x1—
—x2—

...
—xN—

⎤

⎥
⎥
⎦

︸ ︷︷ ︸

data matrix, N × (d+ 1)

y =

⎡

⎢
⎢
⎣

y1
y2
...
yN

⎤

⎥
⎥
⎦

︸ ︷︷ ︸

target vector

ŷ =

⎡

⎢
⎢
⎣

ŷ1
ŷ2
...
ŷN

⎤

⎥
⎥
⎦
=

⎡

⎢
⎢
⎣

wtx1

wtx2
...

wtxN

⎤

⎥
⎥
⎦
= Xw

︸ ︷︷ ︸

in-sample predictions

Ein(w) =
1

N

N∑

n=1

(ŷn − yn)
2

= 1
N
|| ŷ − y ||22

= 1
N
||Xw − y ||22

= 1
N
(wtXtXw − 2wtXty + yty)
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Gradients and vector differentiation 

The gradient of a scalar function f(w) denoted by  
is the vector 
 
 

 We will also denote it as 
 
The requirement that the gradient be a column vector implies: 
 

 
Recall that a necessary (and not sufficient) condition for an 
extremum of a function f(w) is: 
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Solving for the weight vector 

Let’s do some algebra before taking the derivative: 
 
 
 
 
 
 
 
 
 
Now we get that w satisfies: 
 
and  
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(y �Xw)|(y �Xw) = (y| � (Xw)|)(y �Xw)

= (y|y �w|X|)(y �Xw)

= y|y � y|Xw �w|X|y +w|X|Xw

@

@w
(w|

x) =
@

@w
(x|

w) = x

@

@w
(y �Xw)|(y �Xw) = �(y|X)| �X| +X|Xw + (w|X|X)|

= �2X|y + 2X|Xw = 0

X|Xw = X|y

w = (X|X)�1X|y
pseudo-inverse 



Probability theory digression 

Random variable:  the outcome of a random process 
Examples:  the possible outcomes of rolling a die:  {1,2,3,4,5,6} 
 
The expected value of a random variable X: 
 
                                         
(for a continuous variable replace sum with integral) 
The empirical estimate for the expectation: 
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x̄ =
1

n

nX

i=1

xi

E(X) =
X

x

xP (x)



Probability theory digression 

The spread of a distribution around the expected value is its 
variance, defined by: 
 
 
The sample variance is: 
 
 
 
The covariance between two variables X and Y: 
 
 
The sample covariance: 
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�XY = E [(X � E(X)) (Y � E(Y ))] = E [X · Y ]� E [X]E [Y ]
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Correlation between variables 
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The Pearson correlation between two variables is defined as: 
 
 
 
 
It varies between -1 and 1 

rXY =
�XY

�X�Y

Figure from http://en.wikipedia.org/wiki/Correlation_and_dependence 



More insight into the solution 
Let’s compare the general solution 
 
 
With the solution to the one dimensional case (assume data is 
centered, i.e. has zero-mean): 
 
 
 
 
Intuition:  if X and Y are weakly correlated, the slope will be 
small 
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w = (X|X)�1X|y

w =
�XY

�2
XX



More insight into the solution 
Let’s compare the general solution 
 
 
With the solution to the one dimensional case: 
 
 
 
And the special case of two dimensions: 
 
 
 
 

What do we observe when x1 and x2 are uncorrelated? 
Also notice that w1 may be nonzero even if x1 is uncorrelated 

with the target variable.  
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w = (X|X)�1X|y

w =
�XY

�2
XX

w =
1

(�11�22 � �2
12)


�22�1y � �12�2y

�11�2y � �12�1y

�



Linear regression for classification 

You can use linear regression for binary classification problems. 
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Linear Regression for Classification

Linear regression can learn any real valued target function.

For example yn = ±1. (±1 are real values!)

Use linear regression to get w with wtxn ≈ yn = ±1

Then sign(wtxn) will likely agree with yn = ±1.

These can be good initial weights for classification.

Example.

Classifying 1 from not 1

(multiclass→ 2 class)

Average Intensity

Sy
m
m
et
ry
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Sensitivity to outliers 
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Magenta:  solution from least-squares 
Green:  logistic regression 



Do I have to invert that matrix? 

In order to compute w you don’t necessarily need to do it as: 
 
 
Instead, you can solve for w as in: 
 
 
And, in python 
 
 
 
or, using the faster and more numerically stable solve function: 
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w = (X|X)�1X|y

X|Xw = X|y

import numpy as np 
w = np.dot(np.linalg.inv(np.dot(X.T, X)), np.dot(X.T,y)) 

import numpy as np 
w = np.linalg.solve(np.dot(X.T,X), np.dot(X.T, y)) 



Interpreting the weight vector 
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Which component of the weight vector is larger? 
 
Which variable is more relevant for the classification task? 



Interpreting the weight vector 
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It is common practice to use the magnitude of weight vector  
components as an indicator of the importance of a feature. 
 
Caveat:  data needs to be normalized! 



Interpreting the weight vector 

The weight vector for the “heart” dataset: 
 
array([-0.07006162,  0.15838763,  0.28357296,  0.20753778,  
0.23265869, -0.08271229,  0.08011837, -0.3363789 ,  
0.11753745,  0.25560924, 0.09984765,  0.40073063,  
0.23961789]) 
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In the case of a binary classification problem, what is the relevance 
of the sign of wi? 



Generalization 

What can we say about Eout having minimized Ein? 
 
 
 
 
 
 
 
 
 
 
 
 
See section 3.2.2 and exercise 3.4 for details. 
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Generalization

The linear regression algorithm gets the smallest possible Ein in one step.

Generalization is also good.
One can obtain a regression version of dvc.

There are other bounds, for example:

E[Eout(h)] = E[Ein(h)] +O

(
d

N

)

Number of Data Points, N

E
xp

ec
te
d
E
rr
or Eout

Ein

σ2

d + 1
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Measuring regression accuracy 

Root Mean Square Error (RMSE): 
 
 
 
 
 
Compute the RMSE on a test set 
 
Another common measure of error is the Mean Absolute 
Deviation (MAD): 
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RMSE(h) =

vuut 1

N

NX

i=1

(h(xi)� yi)
2

MAD(h) =
1

N

NX

i=1

|yi � h(xi)|


