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Linear models: 
Logistic regression 

Chapter 3.3 
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Predicting probabilities 

Objective:  learn to predict a probability P(y | x) for a binary 
classification problem using a linear classifier 
 
The target function: 
 
 
 
 
 
 
 
For positive examples P(y = +1 | x) = 1 whereas P(y = +1 | x) = 0 
for negative examples. 
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The Target Function is Inherently Noisy

f(x) = P[y = +1 | x].

The data is generated from a noisy target function:

P (y | x) =

⎧

⎪
⎨

⎪
⎩

f(x) for y = +1;

1− f(x) for y = −1.
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Predicting probabilities 

Objective:  learn to predict a probability P(y | x) for a binary 
classification problem using a linear classifier 
 
The target function: 
 
 
 
 
 
 
We’ll assume a particular form for f(x). 
 
Can we assume that f(x) is linear? 
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Another linear model 
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The logistic function (aka squashing 
function): 
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Properties of the logistic function 
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Predicting a Probability

Will someone have a heart attack over the next year?

age 62 years
gender male
blood sugar 120 mg/dL40,000
HDL 50
LDL 120
Mass 190 lbs
Height 5′ 10′′

. . . . . .

Classification: Yes/No

Logistic Regression: Likelihood of heart attack logistic regression ≡ y ∈ [0, 1]

h(x) = θ

(
d
∑

i=0

wixi

)

= θ(wtx)
θ(s)

1

0 s

θ(s) =
es

1 + es
=

1

1 + e−s
.

θ(−s) =
e−s

1 + e−s
=

1

1 + es
= 1− θ(s).
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θ(s) =
es
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1

1 + e−s
.

θ(−s) =
e−s

1 + e−s
=

1
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= 1− θ(s).

c⃝ AML Creator: Malik Magdon-Ismail Logistic Regression and Gradient Descent: 4 /23 Data is binary ±1 −→

Predicting probabilities 

Fitting the data means finding a good hypothesis h 
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What Makes an h Good?

‘fiting’ the data means finding a good h

h is good if:

⎧

⎨

⎩

h(xn) ≈ 1 whenever yn = +1;

h(xn) ≈ 0 whenever yn = −1.

A simple error measure that captures this:

Ein(h) =
1

N

N
∑

n=1

(

h(xn)−
1
2(1 + yn)

)2
.

Not very convenient (hard to minimize).
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The Probabilistic Interpretation

Suppose that h(x) = θ(wtx) closely captures P[+1|x]:

P (y | x) =

⎧

⎪⎨

⎪
⎩

θ(wtx) for y = +1;

1− θ(wtx) for y = −1.
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Fitting the data means finding a good hypothesis h 
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The Probabilistic Interpretation

Suppose that h(x) = θ(wtx) closely captures P[+1|x]:

P (y | x) =

⎧

⎪⎨

⎪
⎩

θ(wtx) for y = +1;

1− θ(wtx) for y = −1.
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The Probabilistic Interpretation

So, if h(x) = θ(wtx) closely captures P[+1|x]:

P (y | x) =

⎧

⎪⎨

⎪
⎩

θ(wtx) for y = +1;

θ(−wtx) for y = −1.
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The Probabilistic Interpretation

So, if h(x) = θ(wtx) closely captures P[+1|x]:

P (y | x) =

⎧

⎪
⎨

⎪
⎩

θ(wtx) for y = +1;

θ(−wtx) for y = −1.

. . . or, more compactly,
P (y | x) = θ(y ·wtx)
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More compactly: 

Is logistic regression really linear? 

 
 
 
 
 
 
To figure out how the decision boundary looks like consider: 
 
 
 
i.e. linear! 
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P (y = +1|x) = exp(w

|
x)

exp(w

|
x) + 1

ln
P (y = +1|x)
P (y = �1|x) = w

|
x

P (y = �1|x) = 1� P (y = +1|x) = 1

exp(w

|
x) + 1
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Maximum likelihood 

We will find w using the principle of maximum likelihood. 
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The Likelihood

P (y | x) = θ(y ·wtx)

Recall: (x1, y1), . . . , (xN, yN) are independently generated

Likelihood:
The probability of getting the y1, . . . , yN in D from the corresponding x1, . . . ,xN :

P (y1, . . . , yN | x1, . . . ,xn) =
N
∏

n=1

P (yn | xn).

The likelihood measures the probability that the data were generated if f were h.
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Valid since 

Maximizing the likelihood 
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Maximizing The Likelihood (why?)

max
∏N

n=1P (yn | xn)

⇔ max ln
(
∏N

n=1P (yn | xn)
)

≡ max
∑N

n=1 lnP (yn | xn)

⇔ min − 1
N

∑N
n=1 lnP (yn | xn)

≡ min 1
N

∑N
n=1 ln

1
P (yn|xn)

≡ min 1
N

∑N
n=1 ln

1
θ(yn·wtxn)

← we specialize to our “model” here

≡ min 1
N

∑N
n=1 ln(1 + e−yn·w

txn)

Ein(w) =
1

N

N∑

n=1

ln(1 + e−yn·w
txn)
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Summary:  maximizing the likelihood is equivalent to 
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−
1

N
ln

(
N
∏

n=1

θ(yn w xn)

)

=
1

N

N
∑

n=1

ln

(
1

θ(yn w xn)

) [

θ(s) =
1

1 + e−s

]

E (w) =
1

N

N
∑

n=1

ln
(

1 + e−ynw xn

)

︸ ︷︷ ︸

(h(xn),yn)
⃝ AML

minimize 

Cross entropy error 

Digression:  gradient descent 

Topographical maps can give us some intuition about how to 
optimize a cost function 

12 

http://www.csus.edu/indiv/s/slaymaker/archives/geol10l/shield1.jpg http://www.sir-ray.com/touro/IMG_0001_NEW.jpg 
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Digression:  gradient descent 

13 Images from http://en.wikipedia.org/wiki/Gradient_descent 

Given a function E(w), the gradient is the direction of steepest ascent 
Therefore to minimize E(w), take a step in the direction of the 
negative of the gradient 

Notice that the gradient is perpendicular 
to contours of equal E(w) 

Gradient descent 

Gradient descent is an iterative process 
 
 
How to pick     ?  
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Our Ein Has Only One Valley

Weights, w

In
-s
am

pl
e
E
rr
or
,
E

in

. . . because Ein(w) is a convex function of w. (So, who care’s if it looks ugly!)
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How to “Roll Down”?

Assume you are at weights w(t) and you take a step of size η in the direction v̂.

w(t + 1) = w(t) + ηv̂

We get to pick v̂ ← what’s the best direction to take the step?

Pick v̂ to make Ein(w(t + 1)) as small as possible.
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w(t+ 1) = w(t) + ⌘v̂

Gradient descent 

 
The gradient is the best direction to take to optimize Ein(w): 

15 

The Gradient is the Fastest Way to Roll Down

Approximating the change in Ein

∆Ein = Ein(w(t+ 1))− Ein(w(t))

= Ein(w(t) + ηv̂)− Ein(w(t))

= η∇Ein(w(t))tv̂

︸ ︷︷ ︸

minimized at v̂ = − ∇Ein(w(t))
||∇Ein(w(t)) ||

+O(η2) (Taylor’s Approximation)

>
≈ −η||∇Ein(w(t)) || ←attained at v̂ = − ∇Ein(w(t))

||∇Ein(w(t)) ||

The best (steepest) direction to move is the negative gradient:

v̂ = −

∇Ein(w(t))

||∇Ein(w(t)) ||
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Choosing the step size 

The choice of the step size affects the rate of convergence:  
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The ‘Goldilocks’ Step Size

η too small η too large variable ηt – just right

Weights, w

In
-s
am

pl
e
E
rr
or
,
E

in

Weights, w

In
-s
am

pl
e
E
rr
or
,
E

in

Weights, w

In
-s
am

pl
e
E
rr
or
,
E

in

large η

small η

η = 0.1; 75 steps η = 2; 10 steps variable ηt; 10 steps
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Let’s use a variable 
learning rate: 

w(t+ 1) = w(t) + ⌘tv̂

⌘t = ⌘ · ||rEin(w(t))||

||rEin(w(t))|| ! 0When approaching  
the minimum: 
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Let’s use a variable 
learning rate: 

w(t+ 1) = w(t) + ⌘tv̂

⌘t = ⌘ · ||rEin(w(t))||

⌘tv̂ = �⌘ · ||rEin(w(t))|| · rEin(w(t))

||rEin(w(t))|| = �⌘rEin(w(t))

The final form of gradient descent 

The choice of the step size affects the rate of convergence:  
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The ‘Goldilocks’ Step Size

η too small η too large variable ηt – just right
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w(t+ 1) = w(t)� ⌘rEin(w(t))

Logistic regression using gradient descent 

We will use gradient descent to minimize our error function. 
 
Fortunately, the logistic regression error function has a single 
global minimum: 
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Our Ein Has Only One Valley

Weights, w

In
-s
am

pl
e
E
rr
or
,
E

in

. . . because Ein(w) is a convex function of w. (So, who care’s if it looks ugly!)
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Finding The Best Weights - Hill Descent

Ball on a complicated hilly terrain

— rolls down to a local valley
↑

this is called a local minimum

Questions:

How to get to the bottom of the deepest valey?

How to do this when we don’t have gravity?
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So we don’t need to worry about 
getting stuck in local minima 

Logistic regression using gradient descent 

Putting it all together: 

20 

Fixed Learning Rate Gradient Descent

ηt = η · ||∇Ein(w(t)) ||

||∇Ein(w(t)) ||→ 0 when closer to the minimum.

v̂ = −ηt ·
∇Ein(w(t))

||∇Ein(w(t)) ||

= −η · ||∇Ein(w(t)) || ·
∇Ein(w(t))

||∇Ein(w(t)) ||

v̂ = −η ·∇Ein(w(t))

1: Initialize at step t = 0 to w(0).
2: for t = 0, 1, 2, . . . do
3: Compute the gradient

gt = ∇Ein(w(t)). ←− (Ex. 3.7 in LFD)

4: Move in the direction vt = −gt.
5: Update the weights:

w(t+ 1) = w(t) + ηvt.

6: Iterate ‘until it is time to stop’.
7: end for
8: Return the final weights.

Gradient descent can minimize any smooth function, for example

Ein(w) =
1

N

N
∑

n=1

ln(1 + e−yn·w
tx) ← logistic regression
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t = 0 w(0)
t = 0, 1, 2, . . .

∇E = −
1

N

N
∑

n=1

ynxn

1 + eynw (t)xn

w(t + 1) = w(t)− η∇E

w

⃝ AML

−
1

N
ln

(
N
∏

n=1

θ(yn w xn)

)

=
1

N

N
∑

n=1

ln

(
1

θ(yn w xn)

) [

θ(s) =
1

1 + e−s

]

E (w) =
1

N

N
∑

n=1

ln
(

1 + e−ynw xn

)

︸ ︷︷ ︸

(h(xn),yn)
⃝ AML
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Logistic regression 

Comments: 
v  Assumptions:  i.i.d. data and specific form of P(y | x). 

In practice logistic regression is solved by faster 
methods than gradient descent 

v  There is an extension to multi-class classification 

21 

Stochastic gradient descent 

Variation on gradient descent that considers the error for 
a single training example: 

22 

Stochastic Gradient Descent (SGD)

A variation of GD that considers only the error on one data point.

Ein(w) =
1

N

N
∑

n=1

ln(1 + e−yn·w
tx) =

1

N

N
∑

n=1

e(w,xn, yn)

• Pick a random data point (x∗, y∗)

• Run an iteration of GD on e(w,x∗, y∗)

w(t + 1)← w(t)− η∇we(w,x∗, y∗)

1. The ‘average’ move is the same as GD;

2. Computation: fraction 1
N

cheaper per step;

3. Stochastic: helps escape local minima;

4. Simple;

5. Similar to PLA.

Logistic Regression:

w(t + 1)← w(t) + y∗x∗

(
η

1 + ey∗wtx∗

)

(Recall PLA: w(t+ 1)← w(t) + y∗x∗)
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(Recall PLA: w(t+ 1)← w(t) + y∗x∗)
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Summary of linear models 

Linear methods for classification and regression: 

23 

The Linear Signal

s = wtx−→

⎧

⎪
⎪
⎪⎪
⎪
⎪
⎪
⎪⎪
⎪
⎪
⎪
⎪
⎪⎨

⎪
⎪
⎪
⎪⎪
⎪
⎪
⎪
⎪
⎪⎪
⎪
⎪
⎪
⎩

→ sign(wtx) {−1,+1}

→ wtx R

→ θ(wtx) [0, 1]

y = θ(s)
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More to come! 


