Linear models: Logistic regression

Chapter 3.3

SPAMMERS ARE BREAKING TRADITIONAL CAPTCHAS WITH A I, SO I'VE BUILT A NEW SYSTEM. IT ASKS USERS TO RATE A SLATE OF COMMENTS AS "CONSTRUCTIVE" OR "NOT CONSTRUCTIVE."

WHEN SPAMMERS TRAIN

THEIR BOTS TO MAKE

MISSION.

Predicting probabilities

Objective: learn to predict a probability $P(y \mid x)$ for a binary classification problem using a linear classifier

The target function:

$$f(\mathbf{x}) = \mathbb{P}[y = +1 \mid \mathbf{x}].$$

$$P(y \mid \mathbf{x}) = \begin{cases} f(\mathbf{x}) & \text{for } y = +1; \\ 1 - f(\mathbf{x}) & \text{for } y = -1. \end{cases}$$

For positive examples $P(y = +1 \mid x) = 1$ whereas $P(y = +1 \mid x) = 0$ for negative examples.

Predicting probabilities

Objective: learn to predict a probability $P(y \mid x)$ for a binary classification problem using a linear classifier

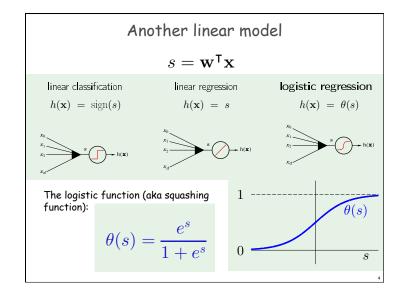
The target function:

$$f(\mathbf{x}) = \mathbb{P}[y = +1 \mid \mathbf{x}].$$

$$P(y \mid \mathbf{x}) = \begin{cases} f(\mathbf{x}) & \text{for } y = +1; \\ 1 - f(\mathbf{x}) & \text{for } y = -1. \end{cases}$$

We'll assume a particular form for f(x).

Can we assume that f(x) is linear?



Properties of the logistic function

$$\theta(s) = \frac{e^s}{1 + e^s} = \frac{1}{1 + e^{-s}}.$$

$$\theta(-s) = \frac{e^{-s}}{1 + e^{-s}} = \frac{1}{1 + e^s} = 1 - \theta(s).$$

$$0$$

Predicting probabilities

Fitting the data means finding a good hypothesis h

$$h \text{ is good if:} \qquad \begin{cases} h(\mathbf{x}_n) \approx 1 & \text{ whenever } y_n = +1; \\ h(\mathbf{x}_n) \approx 0 & \text{ whenever } y_n = -1. \end{cases}$$

Suppose that $h(\mathbf{x}) = \theta(\mathbf{w}^{\mathsf{T}}\mathbf{x})$ closely captures $\mathbb{P}[+1|\mathbf{x}]$:

$$P(y \mid \mathbf{x}) = \begin{cases} \theta(\mathbf{w}^{\mathsf{T}}\mathbf{x}) & \text{for } y = +1; \\ 1 - \theta(\mathbf{w}^{\mathsf{T}}\mathbf{x}) & \text{for } y = -1. \end{cases}$$

Predicting probabilities

Fitting the data means finding a good hypothesis h

$$h$$
 is good if:
$$\begin{cases} h(\mathbf{x}_n) \approx 1 & \text{whenever } y_n = +1; \\ h(\mathbf{x}_n) \approx 0 & \text{whenever } y_n = -1. \end{cases}$$

Suppose that $h(\mathbf{x}) = \theta(\mathbf{w}^{\mathsf{T}}\mathbf{x})$ closely captures $\mathbb{P}[+1|\mathbf{x}]$:

$$P(y \mid \mathbf{x}) = \begin{cases} \theta(\mathbf{w}^{\mathsf{T}}\mathbf{x}) & \text{for } y = +1; \\ \theta(-\mathbf{w}^{\mathsf{T}}\mathbf{x}) & \text{for } y = -1. \end{cases}$$

More compactly: $P(y \mid \mathbf{x}) = \theta(y \cdot \mathbf{w}^{\mathsf{T}} \mathbf{x})$

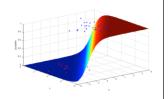
Is logistic regression really linear?

$$P(y = +1|\mathbf{x}) = \frac{\exp(\mathbf{w}^{\mathsf{T}}\mathbf{x})}{\exp(\mathbf{w}^{\mathsf{T}}\mathbf{x}) + 1}$$
$$P(y = -1|\mathbf{x}) = 1 - P(y = +1|\mathbf{x}) = \frac{1}{\exp(\mathbf{w}^{\mathsf{T}}\mathbf{x}) + 1}$$

To figure out how the decision boundary looks like consider:

$$\ln \frac{P(y=+1|\mathbf{x})}{P(y=-1|\mathbf{x})} = \mathbf{w}^{\mathsf{T}}\mathbf{x}$$

i.e. linear!



Maximum likelihood

We will find w using the principle of maximum likelihood.

Likelihood:

The probability of getting the y_1, \ldots, y_N in \mathcal{D} from the corresponding $\mathbf{x}_1, \ldots, \mathbf{x}_N$:

$$P(y_1,\ldots,y_N\mid \mathbf{x}_1,\ldots,\mathbf{x}_n)=\prod_{n=1}^N P(y_n\mid \mathbf{x}_n).$$

Valid since $(\mathbf{x}_1, y_1), \dots, (\mathbf{x}_N, y_N)$ are independently generated

Maximizing the likelihood

$$\max \qquad \prod_{n=1}^{N} P(y_n \mid \mathbf{x}_n)$$

$$\Leftrightarrow \max \quad \ln \left(\prod_{n=1}^{N} P(y_n \mid \mathbf{x}_n) \right)$$

$$\equiv \max \sum_{n=1}^{N} \ln P(y_n \mid \mathbf{x}_n)$$

$$\Leftrightarrow \min \quad -\frac{1}{N} \sum_{n=1}^{N} \ln P(y_n \mid \mathbf{x}_n)$$

$$\equiv \min \frac{1}{N} \sum_{n=1}^{N} \ln \frac{1}{P(y_n | \mathbf{x}_n)}$$

$$\equiv \min \frac{1}{N} \sum_{n=1}^{N} \ln \frac{1}{\theta(y_n \cdot \mathbf{w}^{\mathrm{T}} \mathbf{x}_n)}$$

$$\equiv \min \frac{1}{N} \sum_{n=1}^{N} \ln(1 + e^{-y_n \cdot \mathbf{w}^T \mathbf{x}_n})$$

Maximizing the likelihood

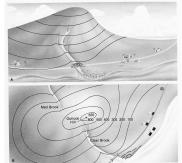
Summary: maximizing the likelihood is equivalent to

minimize
$$E_{\mathrm{in}}(\mathbf{w}) = \frac{1}{N} \sum_{n=1}^{N} \underbrace{\ln \left(1 + e^{-y_n \mathbf{w}^{\mathsf{T}} \mathbf{x}_n}\right)}_{\mathbf{e}(h(\mathbf{x}_n), y_n)}$$

Cross entropy error

Digression: gradient descent

Topographical maps can give us some intuition about how to optimize a cost function

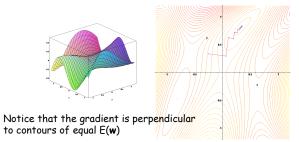


http://www.csus.edu/indiv/s/slaymaker/archives/geol10l/shield1.jpg

http://www.sir-ray.com/touro/IMG_0001_NEW.jpg

Digression: gradient descent

Given a function E(w), the gradient is the direction of steepest ascent Therefore to minimize $E(\mathbf{w})$, take a step in the direction of the negative of the gradient



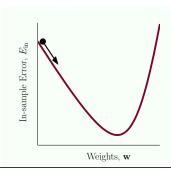
Images from http://en.wikipedia.org/wiki/Gradient_descent

Gradient descent

Gradient descent is an iterative process

$$\mathbf{w}(t+1) = \mathbf{w}(t) + \eta \hat{\mathbf{v}}$$

How to pick $\hat{\mathbf{v}}$?



Gradient descent

The gradient is the best direction to take to optimize $E_{in}(\mathbf{w})$:

Choosing the step size

The choice of the step size affects the rate of convergence: η too large

 η too small

variable η_t – just right

Let's use a variable learning rate:

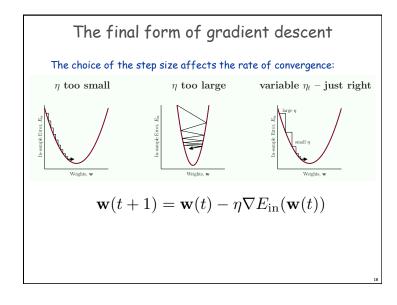
 $\mathbf{w}(t+1) = \mathbf{w}(t) + \eta_t \hat{\mathbf{v}}$

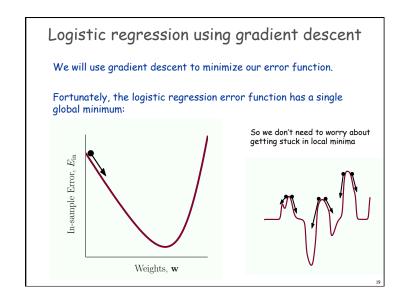
 $\eta_t = \eta \cdot ||\nabla E_{\rm in}(\mathbf{w}(t))||$

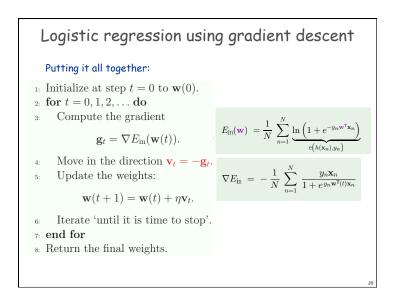
When approaching the minimum:

 $||\nabla E_{\rm in}(\mathbf{w}(t))|| \to 0$

The choice of the step size affects the rate of convergence: $\eta \text{ too small} \qquad \eta \text{ too large} \qquad \text{variable } \eta_t - \text{just right}$ Let's use a variable $\mathbf{w}(t+1) = \mathbf{w}(t) + \eta_t \hat{\mathbf{v}}$ $\eta_t = \eta \cdot ||\nabla E_{\text{in}}(\mathbf{w}(t))||$ $\eta_t \hat{\mathbf{v}} = -\eta \cdot ||\nabla E_{\text{in}}(\mathbf{w}(t))|| \cdot \frac{\nabla E_{\text{in}}(\mathbf{w}(t))}{||\nabla E_{\text{in}}(\mathbf{w}(t))||} = -\eta \nabla E_{\text{in}}(\mathbf{w}(t))$







Logistic regression

Comments:

- Assumptions: i.i.d. data and specific form of P(y | x).
 In practice logistic regression is solved by faster methods than gradient descent
- * There is an extension to multi-class classification

Stochastic gradient descent

Variation on gradient descent that considers the error for a single training example:

$$E_{\text{in}}(\mathbf{w}) = \frac{1}{N} \sum_{n=1}^{N} \ln(1 + e^{-y_n \cdot \mathbf{w}^{\mathsf{T}} \mathbf{x}}) = \frac{1}{N} \sum_{n=1}^{N} e(\mathbf{w}, \mathbf{x}_n, y_n)$$

Pick a random data point (\mathbf{x}_*, y_*)

Run an iteration of GD on $e(\mathbf{w}, \mathbf{x}_*, y_*)$

$$\mathbf{w}(t+1) \leftarrow \mathbf{w}(t) - \eta \nabla_{\mathbf{w}} e(\mathbf{w}, \mathbf{x}_*, y_*)$$

$$\mathbf{w}(t+1) \leftarrow \mathbf{w}(t) + y_* \mathbf{x}_* \left(\frac{\eta}{1 + e^{y_* \mathbf{w}^\mathsf{T} \mathbf{x}_*}} \right)$$

Summary of linear models

Linear methods for classification and regression:

More to come!