Linear models:
Logistic regression

Chapter 3.3

Predicting probabilities

Objective: learn to predict a probability P(y | x) for a binary
classification problem using a linear classifier

The target function: f(x) =Py =+1]|x].

f(x)

for y = +1;
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Py |x) =
1—f(x) fory=—1.

For positive examples P(y = +1 | x) = I whereas P(y = +1 | x) = 0
for negative examples.

Predicting probabilities

Objective: learn to predict a probability P(y | x) for a binary
classification problem using a linear classifier

The target function: f(x)=Ply =+1] x].

f(x) for y = +1;
Ply | x) =
1—f(x) fory=-—1.

We'll assume a particular form for f(x).

Can we assume that f(x) is linear?

Another linear model

The signal § = W X is the basis for several linear models:

linear classification linear regression logistic regression

h(x) = sign(s) h(x) = s h(x) = 6(s)

The logistic function (aka squashing 1 - -
function): 0(s)
es
os)=— "
( ) 14+ e 0 s
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Properties of the logistic function

Predicting probabilities

Fitting the data means finding a good hypothesis h
h(x,)~1  whenever y, = +1;
h is good if:
h(x,) ~ 0  whenever y, = —1.
Suppose that h(x) = O(w"x) closely captures P[+1|x]:

0(w"x) for y = +1;

P(;UIX){

1—0(w'x) fory=—1.

Predicting probabilities

Fitting the data means finding a good hypothesis h

h(x,) =1  whenever y, = +1;

h is good if:
h(x,)~0  whenever y, = —1.

Suppose that h(x) = 0(w"x) closely captures P[+1]x]:
O(w"x) for y = +1;
Ply|x) =
O(—w'x) fory=—1.

More compactly: P(y | x)=0(y-w'x)

Is logistic regression really linear?

exp(wTx)
P = 1 = —
(y = +1x) exp(wTx) + 1
1
(y %) (y = +1[x) xp(wTx) 71

To figure out how the decision boundary looks like consider:

P(y = +1x)
In—2———~ =w'x T

Py = ~1[x) | . P
i.e. linear! {.] ’




Maximum likelihood

We will find w using the principle of maximum likelihood.

Likelihood:

The probability of getting the y1,...,yx in D from the corresponding x, ..., Xy:

N
Py, oun [ X1, %) = [ P(Wn | %)
n=1

Valid since (X1, 91), - - -, (X, yn) are independently generated

Maximizing the likelihood
max Hf;;l Py, | x5)

< max In (Hf:le P(yn | Xn))

= max Z;:\,f:l In P(y, | x,)

. ]\Y
& min — 530 Py, | %)
. 1N 1
= min F>,In Plyalxn)
. 15N L
= min  § X gy

= min + SN In(1 4 e7v W)

Maximizing the likelihood
Summary: maximizing the likelihood is equivalent to

N

minimize E,(w) = % Z In (1 + e’anTxn)

n=1

e(h(xn),yn)

Cross entropy error

Digression: gradient descent

Topographical maps can give us some intuition about how to
optimize a cost function

http://www.csus.edu/indiv/s/slaymaker/archives/geol101/shield!. jpg http://www.sir-ray.com/+ouro/IMG_0001_NEW.jpg
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Digression: gradient descent

Given a function E(w), the gradient is the direction of steepest ascent
Therefore to minimize E(w), take a step in the direction of the
negative of the gradient

B
( ‘\\“‘\\\\\\\\.

Notice that the gradient is per‘pendicular‘
to contours of equal E(w) '/

Images from http://enwikipedia.org/wiki/Gradient_descent 13

Gradient descent

Gradient descent is an iterative process
w(t+1)=w(t)+nv

How to pick v ?

In-sample Error, E;,

Weights, w

Gradient descent

The gradient is the best direction to take to optimize E; (w):
AE’in = Ein(w(t + 1)) - Ei!l(w(t))
= En(w(t) + V) — En(w(t))

= nVEw(w(t))"v+0(n%)

D —
e o _VEa(w(t)
minimized at v = TV Ewn(w(t) [

Choosing the step size

The choice of the step size affects the rate of convergence:

7 too small 7 too large variable 7; — just right

e Wt 1) = w(t) +my
e =1+ ||V Ein(w(®))|l

When approaching ‘ ‘ inn (W (t)) ’ ‘ -0

the minimum:

Weights, w
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Choosing the step size

The choice of the step size affects the rate of convergence:

7 too small n too large variable 17, — just right

e Wit 1) = w() £
m=mn"|VEn(w(t))|
L iom VEa(w(®)
mv = =1 ||VE1H(W(t))H ||VE1n(W(t))H WVEm( ())

The final form of gradient descent

The choice of the step size affects the rate of convergence:

1 too small n too large variable 7, — just right

Weights, w Weights, w Weights, w

Logistic regression using gradient descent
We will use gradient descent to minimize our error function.

Fortunately, the logistic regression error function has a single
global minimum:

So we don't need to worry about
getting stuck in local minima

In-sample Error, Ej,

Weights, w

Logistic regression using gradient descent

Putting it all together:

1 Initialize at step t = 0 to w(0).
2 fort=0,1,2,... do
3 Compute the gradient N

1 =
Eu(w) = — Z In (14 e W ™=n
g = VEy,(w(t)). N = (—r—)’
e(h(xn)yn)
1+ Move in the direction v; = —g;. Ny
5. Update the weights: 1 _ YnXn
p g VE, = — % Z T v

w(t+ 1) =w(t) + nv.

6 lterate ‘until it is time to stop’.
7 end for
s: Return the final weights.
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Logistic regression

Comments:

. Assumptions: i.i.d. data and specific form of P(y | x).
In practice logistic regression is solved by faster
methods than gradient descent

> There is an extension to multi-class classification

Stochastic gradient descent

Variation on gradient descent that considers the error for
a single fraining example:

N N

1 e 1

Bu(w) = 5 > In(1+e7™) = =37 e(w, %0, 42)
n=1 n=1

Pick a random data point (X., y.)

Run an iteration of GD on e(w, X, y.)

w(t+1) < w(t) — nVwe(w, Xy, ys)

. n
w(t+1)  w(t) + yx, (W)

Summary of linear models

Linear methods for classification and regression:

—> sign(w'x) {-1,+1}

s=w'x —> — w'x R

More to come!
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