Approximation vs Generalization

LFD Sections 2.3, 4.1

Assignment 2 FAQ

Does an update of the alphas/weight vector of the adatron occur regardless of whether an example is misclassified?

* Yes!

That brings up another question: when do we stop?

* After a fixed number of iterations (use the same bound you use for the perceptron).
The alpha coefficients of the adatron explode. What should I do?
* Put an upper bound on the magnitude of the alphas

What's a good value for the learning rate?

* That requires some experimentation.

The adatron takes a long time to run

* The instructor suggests a speedup where the weight vector is not computed from scratch after each update.

The bias-variance decomposition

Consider a simple learning problem: two data points and two hypothesis sets.

$$
\begin{array}{ll}
\mathcal{H}_{0}: & h(x)=b \\
\mathcal{H}_{1}: & h(x)=a x+b
\end{array}
$$

Section 2.3

Repeating many times...

For each data set \mathcal{D}, you get a different $g^{\mathcal{D}}$.

So, for a fixed $\mathbf{x}, g^{\mathcal{D}}(\mathbf{x})$ is random value, depending on \mathcal{D}.

The bias-variance decomposition

Let's consider an out-of-sample error based on a squared error measure:

$$
E_{\text {out }}\left(g^{(\mathcal{D})}\right)=\mathbb{E}_{\mathrm{x}}\left[\left(g^{(\mathcal{D})}(\mathrm{x})-f(\mathrm{x})\right)^{2}\right]
$$

To abstract away the dependence on a given dataset:

$$
\begin{aligned}
\mathbb{E}_{\mathcal{D}}\left[E_{\text {out }}\left(g^{(\mathcal{D})}\right)\right] & =\mathbb{E}_{\mathcal{D}}\left[\mathbb{E}_{\mathrm{x}}\left[\left(g^{(\mathcal{D})}(\mathrm{x})-f(\mathrm{x})\right)^{2}\right]\right] \\
& =\mathbb{E}_{\mathrm{x}}\left[\mathbb{E}_{\mathcal{D}}\left[\left(g^{(\mathcal{D})}(\mathrm{x})-f(\mathrm{x})\right)^{2}\right]\right]
\end{aligned}
$$

And let's focus on

$$
\mathbb{E}_{\mathcal{D}}\left[\left(g^{(\mathcal{D})}(\mathrm{x})-f(\mathrm{x})\right)^{2}\right]
$$

The bias-variance decomposition

To evaluate

$$
\mathbb{E}_{\mathcal{D}}\left[\left(g^{(\mathcal{D})}(\mathrm{x})-f(\mathrm{x})\right)^{2}\right]
$$

We consider the "average hypothesis" $\bar{g}(\mathrm{x})=\mathbb{E}_{\mathcal{D}}\left[g^{(\mathcal{D})}(\mathrm{x})\right]$

$$
\begin{aligned}
\mathbb{E}_{\mathcal{D}}\left[\left(g^{(\mathcal{D})}(\mathrm{x})-f(\mathrm{x})\right)^{2}\right]= & \mathbb{E}_{\mathcal{D}}\left[\left(g^{(\mathcal{D})}(\mathrm{x})-\bar{g}(\mathrm{x})+\bar{g}(\mathrm{x})-f(\mathrm{x})\right)^{2}\right] \\
= & \mathbb{E}_{\mathcal{D}}\left[\left(g^{(\mathcal{D})}(\mathrm{x})-\bar{g}(\mathrm{x})\right)^{2}+(\bar{g}(\mathrm{x})-f(\mathrm{x}))^{2}\right. \\
& \left.+2\left(g^{(\mathcal{D})}(\mathrm{x})-\bar{g}(\mathrm{x})\right)(\bar{g}(\mathrm{x})-f(\mathrm{x}))\right] \\
= & \mathbb{E}_{\mathcal{D}}\left[\left(g^{(\mathcal{D})}(\mathrm{x})-\bar{g}(\mathrm{x})\right)^{2}\right]+(\bar{g}(\mathrm{x})-f(\mathrm{x}))^{2}
\end{aligned}
$$

The bias-variance decomposition

$$
\mathbb{E}_{\mathcal{D}}\left[\left(g^{(\mathcal{D})}(\mathrm{x})-f(\mathrm{x})\right)^{2}\right]=\underbrace{\mathbb{E}_{\mathcal{D}}\left[\left(g^{(\mathcal{D})}(\mathrm{x})-\bar{g}(\mathrm{x})\right)^{2}\right]}_{\operatorname{var}(\mathrm{x})}+\underbrace{(\bar{g}(\mathrm{x})-f(\mathrm{x}))^{2}}_{\text {bias }(\mathrm{x})}
$$

Finally, we get:

$$
\begin{aligned}
\mathbb{E}_{\mathcal{D}}\left[E_{\text {out }}\left(g^{(\mathcal{D})}\right)\right] & =\mathbb{E}_{\mathrm{x}}\left[\mathbb{E}_{\mathcal{D}}\left[\left(g^{(\mathcal{D})}(\mathrm{x})-f(\mathrm{x})\right)^{2}\right]\right] \\
& =\mathbb{E}_{\mathrm{x}}[\operatorname{bias}(\mathrm{x})+\operatorname{var}(\mathrm{x})] \\
& =\text { bias }+ \text { var }
\end{aligned}
$$

The tradeoff between bias and variance

bias $=\mathbb{E}_{\mathrm{x}}\left[(\bar{g}(\mathrm{x})-f(\mathrm{x}))^{2}\right]$ $\operatorname{var}=\mathbb{E}_{\mathrm{x}}\left[\mathbb{E}_{\mathcal{D}}\left[\left(g^{(\mathcal{D})}(\mathrm{x})-\bar{g}(\mathrm{x})\right)^{2}\right]\right]$

bias $=\mathbf{0 . 5 0}$
$\operatorname{var}=\mathbf{0 . 2 5}$

\mathcal{H}_{1}

bias $=0.21$
$\operatorname{var}=1.69$

The bias-variance decomposition

In learning there is a tradeoff:

How well can learning approximate the target function
\star How close can we get to that approximation with a finite dataset.

Match model complexity to the amount of data not the complexity of the target function

two data points

\mathcal{H}_{1}

$$
\begin{array}{ll}
\text { bias }=0.50 ; & \text { bias }=0.21 ; \\
\text { var }=0.25 . & \text { var }=1.69 . \\
\hline E_{\text {out }}=0.75 \\
& E_{\text {out }}=1.90
\end{array}
$$

five data points

$$
\text { bias }=0.50 ;
$$

$$
\text { bias }=0.21 ;
$$

$$
\frac{\mathrm{var}=0.1 .}{E_{\text {out }}=0.6}
$$

$$
\frac{\mathrm{var}=0.21 .}{E_{\text {out }}=0.42} \checkmark
$$

Two views of out-of-sample error

VC Analysis

The choice of hypothesis needs to strike a balance between approximating f on the training data and generalizing on new data.

Bias-Variance Analysis

Pick a hypothesis that can fit the data (low bias) and not behave wildly (low variance)

What is overfitting

Assume a quadratic target function and a sample of 5 noisy data points:

What is overfitting

Let's fit this data with a degree 4 polynomial:

What is overfitting

Let's fit this data with a degree 4 polynomial:

Overfitting: fitting the data more than is warranted.
$E_{\text {in }}$ is small, and yet $E_{\text {out }}$ is large

What is overfitting

Let's fit this data with a degree 4 polynomial:

Observations:
\checkmark We are overfitting the data: $E_{\text {in }}=0, E_{\text {out }}$ large
\checkmark The noise did us in!

What is overfitting

Overfitting: fitting the data more than is warranted. In other words - using a model that is more complex than is necessary.

What is overfitting

Let's look at another example:

10th order f with noise.

What is overfitting

Let's compare fitting the data with $2^{\text {nd }}$ degree and $10^{\text {th }}$ degree polynomials:

Although the data is generated with a $10^{\text {th }}$ degree polynomial, the quadratic fit is better!

Which hypothesis?

The choice of hypothesis space depends on the number of available data points:

Learning curves for \mathcal{H}_{2}

Learning curves for \mathcal{H}_{10}

- High complexity hypothesis set: better chance of approximating the target function
* Low complexity hypothesis set: better chance of getting low out-of-sample error

Factors that lead to overfitting

- Small number of data points
* Amount of noise
* Complexity of the target function
* Complexity of the hypothesis set

Regularization

The cure for overfitting - regularization

Without regularization

With regularization

