
Approximation vs Generalization 

LFD Sections 2.3, 4.1 
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Case Study: 2nd vs 10th Order Polynomial Fit

replacements

x

y

Data
2nd Order Fit
10th Order Fit

x

y

Data
2nd Order Fit
10th Order Fit

simple noisy target

2nd Order 10th Order
Ein 0.050 0.034
Eout 0.127 9.00

complex noiseless target

2nd Order 10th Order
Ein 0.029 10−5

Eout 0.120 7680

Go figure:

Simpler H is better even for the more complex target with no noise.
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Assignment 2 FAQ 

Does an update of the alphas/weight vector of the adatron 
occur regardless of whether an example is misclassified? 
v  Yes! 
That brings up another question:  when do we stop? 
v  After a fixed number of iterations (use the same bound you 

use for the perceptron). 
The alpha coefficients of the adatron explode.  What should I 
do? 
v  Put an upper bound on the magnitude of the alphas 
What’s a good value for the learning rate? 
v  That requires some experimentation. 
The adatron takes a long time to run 
v  The instructor suggests a speedup where the weight vector 

is not computed from scratch after each update. 
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The bias-variance decomposition 

Consider a simple learning problem:  two data points and two 
hypothesis sets. 
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A Simple Learning Problem

2 Data Points. 2 hypothesis sets:

H0 : h(x) = b

H1 : h(x) = ax + b

x

y

x

y
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Section 2.3 



Repeating many times… 

a 
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Let’s Repeat the Experiment Many Times

x

y

x

y
For each data set D, you get a different gD.

So, for a fixed x, gD(x) is random value, depending on D.
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The bias-variance decomposition 

Let’s consider an out-of-sample error based on a squared error 
measure: 
 
 
 
To abstract away the dependence on a given dataset: 
 
 
 
 
 
And let’s focus on 
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The bias-variance decomposition 

To evaluate 
 
We consider the “average hypothesis”  
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The bias-variance decomposition 

 
 
 
 
Finally, we get: 
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The tradeoff between bias and variance 
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Example 
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. . .

H0 H1

x

y

ḡ(x)

sin(πx)

x

y ḡ(x)

sin(πx)

= 0.50 = 0.25 = 0.21 = 1.69

⃝ AML

Let’s Repeat the Experiment Many Times

x

y

x

y

For each data set D, you get a different gD.

So, for a fixed x, gD(x) is random value, depending on D.
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The bias-variance decomposition 

In learning there is a tradeoff: 
 
²  How well can learning approximate the target 

function 
²  How close can we get to that approximation with a 

finite dataset. 
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Match model complexity to the amount of data not the 
complexity of the target function 

          two data points                                    five data points 
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Match Learning Power to Data, . . . Not to f

2 Data Points 5 Data Points

x

y

x

y

x

y

ḡ(x)

sin(x)

x

y ḡ(x)

sin(x)

H0

bias = 0.50;
var = 0.25.
Eout = 0.75 !

H1

bias = 0.21;
var = 1.69.
Eout = 1.90

x

y

x

y

x

y

ḡ(x)

sin(x)

x

y ḡ(x)

sin(x)

H0

bias = 0.50;
var = 0.1.
Eout = 0.6

H1

bias = 0.21;
var = 0.21.
Eout = 0.42 !
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Two views of out-of-sample error 

a 
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Decomposing The Learning Curve

VC Analysis Bias-Variance Analysis

Number of Data Points, N

E
xp

ec
te
d
E
rr
or

in-sample error

generalization error

Eout

Ein

Number of Data Points, N
E
xp

ec
te
d
E
rr
or

bias

variance
Eout

Ein

Pick H that can generalize and has a good
chance to fit the data

Pick (H,A) to approximate f and not behave
wildly after seeing the data
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The choice of hypothesis needs to strike 
a balance between approximating f on the 
training data and generalizing on new data. 

Generalization

The linear regression algorithm gets the smallest possible Ein in one step.

Generalization is also good.
One can obtain a regression version of dvc.

There are other bounds, for example:

E[Eout(h)] = E[Ein(h)] +O

(
d

N

)

Number of Data Points, N

E
xp

ec
te
d
E
rr
or Eout

Ein

σ2

d + 1

c⃝ AML Creator: Malik Magdon-Ismail Linear Classification and Regression: 20 /21 Regression for classification −→

Pick a hypothesis that can fit the data (low bias)  
and not behave wildly (low variance) 
 



What is overfitting 

Assume a quadratic target function and a sample of 5 
noisy data points: 
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An Illustration of Overfitting on a Simple Example

Quadratic f

5 data points

A little noise (measurement error)

5 data points→ 4th order polynomial fit

x

y
Data
Target

Classic overfitting: simple target with excessively complex H.

The noise did us in. (why?)
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Chapter 4 



What is overfitting 

Let’s fit this data with a degree 4 polynomial: 
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An Illustration of Overfitting on a Simple Example

Quadratic f

5 data points

A little noise (measurement error)

5 data points→ 4th order polynomial fit

x

y
Data
Target
Fit

Classic overfitting: simple target with excessively complex H.

Ein ≈ 0; Eout ≫ 0

The noise did us in. (why?)
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What is overfitting 

Let’s fit this data with a degree 4 polynomial: 
 
 
 
 
 
 
 
Overfitting:  fitting the data more than is warranted. 
 
Ein is small, and yet Eout is large 
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An Illustration of Overfitting on a Simple Example

Quadratic f

5 data points

A little noise (measurement error)

5 data points→ 4th order polynomial fit

x

y

Data
Target
Fit

Classic overfitting: simple target with excessively complex H.

Ein ≈ 0; Eout ≫ 0

The noise did us in. (why?)
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What is overfitting 

Let’s fit this data with a degree 4 polynomial: 
 
 
 
 
 
 
 
Observations: 
ü  We are overfitting the data:  Ein = 0, Eout large 
ü  The noise did us in! 
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An Illustration of Overfitting on a Simple Example

Quadratic f

5 data points

A little noise (measurement error)

5 data points→ 4th order polynomial fit

x

y

Data
Target
Fit

Classic overfitting: simple target with excessively complex H.

Ein ≈ 0; Eout ≫ 0

The noise did us in. (why?)
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What is overfitting 

 
 
 
 
 
 
 
 
 
Overfitting:  fitting the data more than is warranted. 
In other words – using a model that is more complex 
than is necessary. 
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Overfitting is Not Just Bad Generalization

in-sample error

out-of-sample error

overfitting

VC dimension, dvc

E
rr
or

Overfitting:

Going for lower and lower Ein results in higher and higher Eout

c⃝ AML Creator: Malik Magdon-Ismail Overfitting: 8 /24 Case study: simple and complex f −→

Model complexity 



What is overfitting 

Let’s look at another example: 
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Case Study: 2nd vs 10th Order Polynomial Fit

x

y

Data
Target

x

y

Data
Target

10th order f with noise. 50th order f with no noise.

H2: 2nd order polynomial fit

H10: 10th order polynomial fit
←− special case of linear models with feature transform x #→ (1, x, x2, · · · ).

Which model do you pick for which problem and why?
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What is overfitting 

Let’s compare fitting the data with 2nd degree and 
10th degree polynomials: 
 
 
 
 
 
 
 
 
Although the data is generated with a 10th degree 
polynomial, the quadratic fit is better! 
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Case Study: 2nd vs 10th Order Polynomial Fit

replacements

x

y

Data
2nd Order Fit
10th Order Fit

x

y

Data
2nd Order Fit
10th Order Fit

simple noisy target

2nd Order 10th Order
Ein 0.050 0.034
Eout 0.127 9.00

complex noiseless target

2nd Order 10th Order
Ein 0.029 10−5

Eout 0.120 7680

Go figure:

Simpler H is better even for the more complex target with no noise.
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Which hypothesis? 
The choice of hypothesis space depends on the number of 
available data points: 
 
 
 
 
 
 
 
 
 
 
v  High complexity hypothesis set:  better chance of 

approximating the target function 
v  Low complexity hypothesis set: better chance of getting low 

out-of-sample error  
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When is H2 Better than H10?

Learning curves for H2 Learning curves for H10

Number of Data Points, N

E
xp

ec
te
d
E
rr
or Eout

Ein

Number of Data Points, N

E
xp

ec
te
d
E
rr
or

Eout

Ein

Overfitting:
Eout(H10) > Eout(H2)
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Factors that lead to overfitting 

v  Small number of data points 
v  Amount of noise 
v  Complexity of the target function 
v  Complexity of the hypothesis set 
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Regularization 

The cure for overfitting - regularization 
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x

y

x
y

⃝ AML

Without regularization With regularization 


