
Regularization and model selection 

Chapter 4 
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Reminder:  bias vs variance, overfitting 
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An Illustration of Overfitting on a Simple Example

Quadratic f

5 data points

A little noise (measurement error)

5 data points→ 4th order polynomial fit

x

y

Data
Target
Fit

Classic overfitting: simple target with excessively complex H.

Ein ≈ 0; Eout ≫ 0

The noise did us in. (why?)
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ḡ(x)

sin(πx)

x

y ḡ(x)
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Let’s Repeat the Experiment Many Times
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For each data set D, you get a different gD.

So, for a fixed x, gD(x) is random value, depending on D.
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Regularization 

The cure for overfitting - regularization 
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Regularization 

How does it work? 
 
v  Constrains the model so it cannot fit the noise 
v  Potential side effect:  if it cannot fit the noise, can it 

fit the target function? 
v  Introduces bias and reduces variance, so that 

(hopefully) out-of-sample error is lower 
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Constraining the model 

Let’s penalize large weights 
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Constraining the Model: Does it Help?
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constrain weights to be smaller

. . . and the winner is:
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One effect:  increased bias 
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Bias Goes Up A Little
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no regularization

bias = 0.21

regularization

bias = 0.23 ← side effect

(Constant model had bias=0.5 and var=0.25.)
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Second effect:  dramatic reduction in variance 
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Variance Drop is Dramatic!
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no regularization

bias = 0.21
var = 1.69

regularization

bias = 0.23 ← side effect

var = 0.33 ← treatment

(Constant model had bias=0.5 and var=0.25.)
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Constraining the complexity of the model 

Replace Ein with: 
 
 
 
 
 
              regularization constant 
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Ω = Ω(h)

E (h) = E (h) +
λ

N
Ω(h)

↓ ↓

E (h) ≤ E (h) + Ω(H)

E E E

⃝ AML

Regularization term 
Ω = Ω(h)

E (h) = E (h) +
λ

N
Ω(h)

↓ ↓

E (h) ≤ E (h) + Ω(H)

E E E

⃝ AML



Choosing a regularizer 

We want to constrain the learned function in the direction 
of the target function. 
 
Intuition:  noise is non-smooth 
 
Common choice for the augmented in-sample-error: 
 
 
 
 
This regularization term controls the size of the 
components of the weight vector. 
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weight decay regularizer 
Eaug(w) = Ein(w) + �w|w



Is there an optimal value for λ?    
The behavior of Eout as a function of the regularization 
parameter for varying levels of noise: 
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Is there an optimal value for λ? 

Minimizing  
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Don’t Overdose

Minimizing Ein(w) +
λ

N
wtw with different λ’s

λ = 0 λ = 0.0001 λ = 0.01 λ = 1
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Overfitting → → Underfitting
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Eaug(w) = Ein(w) + �w|w



Regularized least-squares 

Ridge regression: 
 
 
To solve: 
 
 
 
 
 
Compare to the solution without regularization: 
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w = (X|X+ �I)�1X|y

Eaug(w) = (y �Xw)|(y �Xw) + �||w||2

w

@Eaug(w)

@w
= �2X|y + 2X|Xw + 2�w = 0

w = (X|X)�1X|y



Regularized least-squares 

Ridge regression: 
 
 
 
There is a tradeoff between fitting (the error term) and 
regularization.  The regularization terms can therefore 
prevent overfitting.  The parameter λ controls this 
tradeoff. 
 
Many ML methods can be expressed as solution to a cost 
function of the form: 

     error term + regularization term 
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Eaug(w) = (y �Xw)|(y �Xw) + �||w||2



The effect of the regularization parameter 
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Each curve is the magnitude of the weight vector associated with a given feature. 
Computed on the scaled version of the “heart” dataset. 



The effect of the regularization parameter 
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As the regularization parameter increases, wi shrinks toward 0 



The validation set 

How to choose the value of the regularization parameter? 
Take a sneak peak at Eout using a validation set! 
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Choosing the size of the validation set 

 
 
 
 
 
 
 
 
 
 
 
Rule of thumb:  use 20% of the data for validation 
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Choosing the size of the validation set 

 
 
 
 
 
 
 
 
Observations: 
 
v  As we increase the size of the validation set, the estimate 

goes up because of a small training set 
v  The uncertainty in Eval decreases as we increase K, up to a 

point, where a small training set size generates uncertainty 
in the estimate 
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Choosing K
PSfrag
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Rule of thumb: K∗ = N
5 .
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Shaded region: 
the uncertainty (variance) 
of the estimate 



Using the validation set 

At the end:  train a model on 
all the data using the 
parameters of Hm*. 
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Comparing Ein and Eval for Model Selection

Validation Set Size, K
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The validation set is used to get estimates that allow us to  
choose a value for the regularization parameter. 
 



We have a dilemma… 

We would like to have the following: 
 
 
 
 
 
g : the model as a result of training on all the data 
g-: the model trained on Dtrain  
 
Can we have K both large and small? 
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Leave-one-out errors 

Extreme case:  K=1 
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The Leave One Our Errors

e1

x

y

e2

x

y

e3

x

y

E[e1] = Eout(g1)

Ecv =
1

N

N∑

n=1

en

c⃝ AML Creator: Malik Magdon-Ismail Validation and Model Selection: 23 /29 CV is unbiased −→



The leave-one-out estimate 

Extreme case:  K=1 
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Cross Validation is Unbiased

Theorem. Ecv is an unbiased estimate of Ēout(N − 1).
↖

Expected Eout when learning with N − 1 points.
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Cross validation 

The leave-one-out estimate is expensive to compute! 
 
Cross validation: 
q  Randomly partition the data into k parts (“folds”). 
q  Set one fold aside for evaluation and train a model on the 

remaining k-1 folds and evaluate it on the held-out fold. 
q  Repeat until each fold has been used for evaluation 
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Cross Validation is Computationally Intensive

N epochs of learning each on a data set of size N − 1.

• Analytic approaches, for example linear regression with weight decay

wreg = (ZtZ + λI)−1Zty

Ecv =
1

N

N∑

n=1

(
ŷn − yn

1− Hnn(λ)

)2

H(λ) = Z(ZtZ + λI)−1Zt.

• 10-fold cross validation

D1 D2 D3 D4 D5 D6 D7 D8 D9 D10

train trainvalidate

D︷ ︸︸ ︷
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Cross validation 

The leave-one-out estimate is expensive to compute! 
 
Cross validation: 
q  Randomly partition the data into k parts (“folds”). 
q  Set one fold aside for evaluation and train a model on the 

remaining k-1 folds and evaluate it on the held-out fold. 
q  Repeat until each fold has been used for evaluation 

q  The reported error is the average over the errors for each 
fold. 
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Cross validation 

The leave-one-out estimate is expensive to compute! 
 
Cross validation: 
q  Randomly partition the data into k parts (“folds”). 
q  Set one fold aside for evaluation and train a model on the 

remaining k-1 folds and evaluate it on the held-out fold. 
q  Repeat until each fold has been used for evaluation 

Stratified-cross validation aims at achieving roughly the same 
class distribution in each fold. 
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Cross Validation is Computationally Intensive
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Using cross-validation 
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Restoring D

D1

D

g

g1

D2 · · ·

· · ·

Ecv

︸ ︷︷ ︸
take average

g
N

g2
(x1, y1) (x2, y2) (xN , yN )

DN

e1 e2 eN· · ·

CUSTOMER

Eout(g
(N))≤ Ēout(N − 1) ≤ Ecv +O

(
1√
N

)
.

↑
learning curve

↑
nearly independent en

Ecv can be used for model selection just as Eval, for example to choose λ.
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customer 
 

select the best 
model 



Bias 

The error estimates using the validation set are 
optimistic estimates of Eout! 
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Bias 
The error estimates using the validation set are 
optimistic estimates of Eout! 
 
 
 
 
So you need to have a separate test set. 
 
Training set: totally contaminated 
Validation set:  slightly contaminated 
Test set:  “clean” 
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