Regularization and model selection

Chapter 4




Reminder: bias vs variance, overfitting
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Regularization

The cure for overfitting - reqularization

O Data
— Target

—Fit

X X

Without regularization With regularization



Regularization
How does it work?

. Constrains the model so it cannot fit the noise

» Potential side effect: if it cannot fit the noise, can it
fit the target function?

» Introduces bias and reduces variance, so that
(hopefully) out-of-sample error is lower



Constraining the model

Let's penalize large weights




One effect: increased bias
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Second effect: dramatic reduction in variance

> g(z) > g(z)
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bias = 0.21 bias = 0.23

var = 1.69 var = 0.33



Constraining the complexity of the model
Replace E;, with:

Bunlh) = Bulh) + £9(h)

Regularization term
\ regularization constant



Choosing a regularizer

We want to constrain the learned function in the direction
of the target function.

Intuition: noise is non-smooth

Common choice for the augmented in-sample-error:

Eoug(W) = Ejp(W) + AWwTw

weight decay regularizer

This regularization ferm controls the size of the
components of the weight vector.



Is there an optimal value for A?

The behavior of E_; as a function of the regularization
parameter for varying levels of noise:
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Is there an optimal value for A?
Minimizing Eaug(W) = Eip (W) + AwTw

A=0 A = 0.0001 A =0.01 A=1

Overfitting — — Underfitting
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Regularized least-squares

Ridge regression:
Eaug(w) — (y — XW)T(y — XW) - )‘HWHQ
To solve:

OFE g (W)
Oow

W = (XTX 4+ \I)'XTy

= 2XTy + 2XTXwW 4+ 2\w = 0

Compare to the solution without regularization:

w = (XTX) ' XTy
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Regularized least-squares

Ridge regression:

Fowe(W) = (y — Xw)T(y — Xw) + A |wl|?

There is a tradeoff between fitting (the error term) and
regularization. The reqularization terms can therefore
prevent overfitting. The parameter A controls this
tradeoff.

Many ML methods can be expressed as solution to a cost
function of the form:

error term + regularization term
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The effect of the regularization parameter

ngght vector coefficients as a function of the regularization parameter
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Each curve is the magnitude of the weight vector associated with a given feature.
Computed on the scaled version of the “heart"” dataset.
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The effect of the regularization parameter

ngght vector coefficients as a function of the regularization parameter
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As the regularization parameter increases, w; shrinks foward O
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The validation set

How to choose the value of the reqgularization parameter?

Take a sneak peak at E,; using a validation set!

On a validation set (x1,%1), - , (XK, YK ), the error is Eyi(h) =

| =

S elh(x), ui)

K
k=1
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Choosing the size of the validation set

Given the data set D = (x1,v1), " , (XN, YN)

K points — validation N — K points — training
D o7 .
wal train

Small K = bad estimate

Large K — !

Rule of thumb: use 20% of the data for validation
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Choosing the size of the validation set

Shaded region: E
the uncertainty (variance)> /
of the estimate £
2
ObS@PVGTlOﬂS- Size (1)? Validation Set,m}( .

As we increase the size of the validation set, the estimate
goes up because of a small training set

The uncertainty in E, decreases as we increase K, up tfo a
point, where a small training set size generates uncertainty

in the estimate .



Using the validation set

The validation set is used to get estimates that allow us to
choose a value for the reqgularization parameter.

M models Hy, ..., Hy Ha Ho Hu
Dtrain
Use Diyain to learn g, for each model i i i
A - _ _
g1 9o 9m
Evaluate g,, using Dy i i i
Dval
E,=FEug,); m=1....M
E: B, By
Pick model m = m™ with smallest E,, ik the bent
At the end: train a model on (Hares, )

all the data using the D +
parameters of H, . v

m*
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We have a dilemma...

We would like to have the following:

Eout(g)% Out(g_)% Val(g )
(small K) (large K)

g : the model as a result of training on all the data
g the model trained on D;,.,

Can we have K both large and small?
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Leave-one-out errors

Extreme case: K=1
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The leave-one-out estimate

Extreme case: K=1
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Theorem. E., is an unbiased estimate of Eg (N — 1).

N

Expected Eout when learning with N — 1 points.



Cross validation

The leave-one-out estimate is expensive to computel

Cross validation:

Q

Q

Randomly partition the data into k parts (“folds").

Set one fold aside for evaluation and train a model on the
remaining k-1 folds and evaluate it on the held-out fold.

Repeat until each fold has been used for evaluation

D
Di. Dy Ds Dy Ds Ds D; Ds Dy Do
| | — | | | | |

train validate train

Ve
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Cross validation

The leave-one-out estimate is expensive to computel

Cross validation:

Q

Q

Randomly partition the data into k parts (“folds").

Set one fold aside for evaluation and train a model on the
remaining k-1 folds and evaluate it on the held-out fold.

Repeat until each fold has been used for evaluation

D
" Dy Dy D3y Dy Ds Dg D Dy Dy Dig
| | . | | | | |
train validate train

The reported error is the average over the errors for each
fold.
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Cross validation

The leave-one-out estimate is expensive to computel

Cross validation:
a Randomly partition the data into k parts ("folds").

a Set one fold aside for evaluation and train a model on the
remaining k-1 folds and evaluate it on the held-out fold.

a Repeat until each fold has been used for evaluation

D
" Dy Dy D3y Dy Ds Dg D Dy Dy Dig
| | . | | | | |
train validate train

Stratified-cross validation aims at achieving roughly the same
class distribution in each fold.
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Using cross-validation
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Bias

The error estimates using the validation set are
optimistic estimates of E_ !

We selected the model H,,,» using D,

E.(g, «) is a biased estimate of E,.(g, «)

—
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Expected Error
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> Validation Sé’? Size, K
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Bias

The error estimates using the validation set are
optimistic estimates of E_ /!

We selected the model H,,,+ using D,

E..i(g, «) is a biased estimate of Ei(g, «)

So you need to have a separate test set.

Training set: totally contaminated
Validation set: slightly contaminate
Test set: “clean”
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