Support vector machines and large margin
classification

Chapter e-8




Which hyperplane is better?

Which of these hyperplanes is likely to yield a more accurate classifier?



Which hyperplane is better?

The hyperplane on the right has the largest margin

The optimal margin hyperplane is intfroduced in section 8.1 in Chapter e-8 of the book



Which hyperplane is better?

It also provides the largest cushion against noise

The book calls such a hyperplane “fat"



Large margin classifiers

Perceptron: find hyperplane that separates the two classes

Support Vector Machine (SVM): separating hyperplane with a
large margin 10 .

Intuitive concept that is backed by
theoretical results °

(statistical learning theory)
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Has its origins in the work of Vladimir
Vapnik
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Vapnik, V., and A. Lerner. Pattern recognition using generalized portrait method.
Automation and Remote Control, 24, 774-780, 1963.



The history of SVMs

Large margin linear classifiers

= Vapnik, V., and A. Lerner. Pattern recognition using
generalized portrait method. Automation and Remote
Control, 24, 774-780, 1963.

Large margin non-linear classifiers

. B. Boser, I. Guyon, and V. Vapnik. A training algorithm = -
for optimal margin classifiers. In Fifth Annual —

Workshop on Computational Learning Theory, pages 144 | = °
—152, 1992 | f

SVMs for non-separable data B/

« C. Cortes and V. N. Vapnik, Support vector networks.
Machine Learning, vol. 20, no. 3, pp. 273-297, 1995.

Since then: lots of other large margin algorithms



Bring back the bias

Before: Now:
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The geometric margin

The margin of a linear discriminant:

1
§WT(X@ — X@)

~_aunit vector
in the direction of w

This exposition of the large margin hyperplane follows section 4.1 in
Asa Ben-Hur and Jason Weston. A User's guide to Support Vector Machines, 2009.

http://www.cs.colostate.edu/~asa/pdfs/howto.pdf



The geometric margin

Want to find:

1
§WT(X@ — Xg)

Suppose that x, and x_ are equidistant from the decision
boundary:

wWixe +b=a
wWixe +b=—a
Subtracting the two equations:
wT(xg — Xg) = 2a

Divide by the norm of w:
2a

[wl]

W (Xg —Xg) =



Canonical separating hyperplane

w'x,+b>0

w'x, +b<0

Hyperplane h = (b, w)

h separates the data means:

Yo(W'x, +b) >0

By rescaling the weights and bias,

min Yn(W'x, +b) =1
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The geometric margin

To get a well-defined value we will use the canonical
representation of a hyperplane.

1

Under this assumption we have that the margin equals ’ ’ ‘ ’
W

Maximizing the margin is therefore equivalent to minimizing ‘ ‘W‘ ’2
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Motivation

Theoretical motivation: The VC dimension, which
measures the complexity of a hypothesis, increases
with decreasing margin.
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The linear SVM

Objective: maximize the margin while correctly
classifying all examples correctly

1 2
mmlmlze— [|w|]
w,b

subject to: y;(WTx; +b)>1 1=1,...,

N .
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Digression: constrained optimization

Before considering optimization problems with inequality
constraints we will consider ones with equality constraints:

minimize f(x)

subject to: g;(x) =0

And to make things even simpler, start with the case of a single
constraint g(x)

minimize f(x)

subject to: ¢g(x) =0
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Digression: constrained optimization
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Images from http://en.wikipedia.org/wiki/Lagrange_multiplier
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Digression: constrained optimization

Claim: A minimizer x* of the constrained optimization problem
must have the property that V f(x*) is orthogonal to the
constraint surface.

Therefore there exists X\ # 0 such that

Vf(x*)+ AVg(x*) =0

\is knownyas the Lagrange multiplier

> x
Images from http://en.wikipedia.org/wiki/Lagrange_multiplier
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Lagrange multipliers

When there are multiple equality constraints:
V) + Y AVgi(x*) =0
The Lagrangian function: :
A(x,A) = f(x) + Z Aigi(x) = f(x) + ATg(x)
The above condition is ob’raineé by setting
VxA(x,A) =0 Vv, Denotes gradient

with respect to x
And the condition VA (x,A) =0
leads to the constraint equations.

Conclusion: the solution is a stationary point of the Lagrangian
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Inequality constraints

minimize f(x)

subject to: g(x) <0

Two possible scenarios:

g(x) < O - the constraint is inactive

g(x) = O - the constraint is active
If the constraint is inactive the stationarity condition is V f(x) = 0
This corresponds to a stationary point of the Lagrangian with A = 0
When the constraint is active, we have )\ #£ (
Both cases can be summarized by the condition

Ag(x) =0

The sign of X is important: f(x) will be minimized only if its
gradient is oriented away from the region g(x) < O, i.e.

Vf(x*)=—-AVg(x™) where A > 0
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Constrained optimization with inequality
constraints

Conclusion:

Our constrained optimization problem of minimizing f(x) such
that g(x) < O is solved by x, A that satisfy:

VA(x,A) =0
g9(x) <0

A >0

Ag(x) =0

These are known as the KKT conditions
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Constrained optimization with inequality
constraints

With multiple constraints:

Our constrained optimization problem of minimizing f(x) such
that gi(x) < O is solved by x, A that satisfy:

VAx,A) =0
9i(x) <0
A>0
Aigi(x) =0

These are known as the KKT conditions
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Lagrangian duality

Claim: The problem of minimizing f(x) s.t. g,(x) < O can be
expressed as:

min m}z\lx A(x,A) such that A > 0

We can see this by performing the inner maximization:

f(x) g(x) <0

A

L(x, )

N,
* s
A
¥

Solution is a saddle point
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Lagrangian duality

Claim: The problem of minimizing f(x) s.t. g,(x) < O can be
expressed as:

min m}z\lx A(x,A) such that A > 0

Instead of using the primal formulation let's consider:

max min A(x, A) such that A >0

This is called the dual

Under certain conditions (convexity) the two problems have the
same solution
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Back to SVMs

Lagrangian for the SVM problem:
1 n
A(w, b, ) = S[w* + 37 ai [1 = g (wTxi +b)

1=1 original constraints:
Necessary conditions for the saddle point: yi(wix; +0) > 1
O\ -
Ao =W+ ) o(—yix;) =0
- 2_; (—yix;)

n
= W = Z Qi X

1=1
n

O\
— = a;y; = 0

How do we get b?
See sections 8.2.2,8.2.3 in Chapter e-8
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Support Vectors

Let's use the KKT conditions:
87 [1 — Y; (WTXi -+ b)] =0

Implication:
Pick an i such that a; > 0

Y, (WTx; +b) =1

= b=1vy; — wWTx;
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Support Vectors

Let's use the KKT conditions:
87 [1 — Y, (WTXZ' + b)] =0

Implication:
Pick an i such that «; > 0

y; (Wix; +b) =1
= b=y, —wW'x;

The correspond x; are called
support vectors
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Support Vectors

Claim: The fraction of support vectors is an upper bound on the
estimated Leave-One-Out error (see page 17 in chapter 8)

N
1 # support vectors
CV SVM —— .
SO

Reasoning: if we take out a data point which is not a support
vector, the decision boundary remains the same.




The dual

1 n
A(w,b,a) = §HWH2 + Zai 1 —y; (WTx; —|— b)]

1=1
The dual: W= Z VilfiRki

n T n
i=1 =1
+ Z a; — b Z oY,
i=1 i=1
7" 7"
— Z QY (Z OéjijJT-Xz')
i=1 j=1



The dual

1 n T n

=5 (Z &iyixi> Z QjYjX;j
i=1 j=1
- Z a; —b Z Qi Yi
i=1 i=1

— Z QY5 (Z Ozjij;Xi)

= Z o — = > >1aza3yzij X
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The dual

n n n

1
maximize E = 5 54 SJ QGO Y Y X X

«

subject to: a; > 0, Zoziyi =0
i=1

Comments: quadratic programming problem (no local minimal)
Usually a sparse solution (many alphas equal to O)

Compare to the primal:

o] 9
minimize—||w||
w,b 2

subject to: y;(WTx; +b)>1 1=1,...,
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The non-seaprable case: the soft margin SVM

In order to allow for misclassifications we replace the constraints
Y, (WTx; +0) > 1

with yi(Wixi +b) > 1-¢

& > 0 are called slack variables

Need to incorporate the slack variables in the optimization problem
because we want to discourage their. We'll do it with:

n

Z & which is a bound on the number of misclassified examples
i=1

Section 8.4 in Chapter e-8
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Soft margin SVM
Our optimization problem for the non-separable case:

o1l =
{mzeinH +CY &

mini
w,b :
1=1
subject to: y;(WTx; +b) >1—-¢&;, £ >0, 1=1,...,n.

C=100

1.0

0.5

0.0

-0.5
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Useful even if the data is linearly separable!
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SVMs for non-separable data

Our optimization pr'oblem for the non-separable case:

minimize— HW||2 + C’Z &

w,b
1=1

subject to: y;(WTx; +b) >1—-&, & >0, i=1,...

Let's form the Lagrangian:
1 ) n n
A(W,b,a,f):§HW|| —I—C’Zfi—i—Zai[l —y; (WTx; + b)]

Saddle point e ua’rions:z_ OA -
P i —ZW—Z&iiniZO

1=1
= En: yio; = 0
1=1

oA
afz C—Ck@ 62 =0

1.

Z Bi&;
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The dual

Plugging into the Lagrangian we get the following dual formulation:

n

mn 1 mn
maximize E = E E QGO Y YK X
(8

n
subject to: a; > 0, Zaiyi =0
i=1
6; >0, C—ao; —5;=0
Beta appears only in the constraints. Replace it with the
constraint 0<a; <C
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The dual

The final form of the dual becomes

’L].]].

subject to: 0 < o; < C, Z a;y; =0
i=1
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SVM: dual and primal

Primal: mmlriuze—HW\ 4+ C Z &
1=1

subject to: y;(wTx; +b) >1—-&;, >0, i=1,...,n.

Dual: max1m1ze E o — — E E QY YX] X

zlgl

subject to: 0 < o; < C, Zaiyi =0
i=1

The dual has simpler constraints and will allow us to use SVMs as
non-linear classifiers
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SVM solvers

Primal:
» Fast
. Software:
- liblinear - linear SVMs
« PEGASOS - subgradient descent that also works for nonlinear SVM

Dual:

- You can solve it by generic quadratic programming solvers
« SVM-specific solvers: SMO (optimize two alphas at a time)
= Software: libsvm (a flavor of SMO)

Scikit-learn uses liblinear and libsvm
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SMO

Sequential Minimal Optimization (SMO): A solver for the SVM
dual problem.

When you choose two variables, the resulting problem can be
solved analytically!

Issues and tricks:
= Which two variables to choose?

« Shrinking: temporarily remove variables that are less likely to be
chosen (at upper/lower bounds). Need occasional "unshrinking”.

Platt, John (1998), Sequential Minimal Optimization: A Fast Algorithm for Training Support
Vector Machines
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Show demo in 2-d

Demo
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