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Deep learning 

Some of the most iconic companies are investing heavily in deep 
learning 
. 
 

https://research.facebook.com/ai/ 

https://www.tensorflow.org/ 

https://deepmind.com/ 

http://www.nature.com/nature/journal/v529/n7587/full/nature16961.html 

AlphaGo 



Why this interest in deep learning? 

The 2012 ImageNet visual recognition challenge: 
■  1000 classes, 1,431,167 images 

 
Geoff Hinton’s group:  16% error using convolutional neural 
networks 
Closest competitor:  26% 
 
Current level of error:  around 5% 
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Dalmatian 

http://www.image-net.org/ 



Deep learning 

Deep learning:  neural architectures with lots of layers. 
An umbrella name for lots of different network architectures 
 
A neural network with a single hidden layer can approximate any 
function. 
 
However, a network with multiple layers can represent the 
target function more efficiently. 
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Interpreting network weights 
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6.6. BACKPROPAGATION, BAYES THEORY AND PROBABILITY 25

sample training patterns

learned input-to-hidden weights

Figure 6.14: The top images represent patterns from a large training set used to train
a 64-2-3 sigmoidal network for classifying three characters. The bottom figures show
the input-to-hidden weights (represented as patterns) at the two hidden units after
training. Note that these learned weights indeed describe feature groupings useful for
the classification task. In large networks, such patterns of learned weights may be
difficult to interpret in this way.

6.6.1 Bayes discriminants and neural networks

As we saw in Chap. ?? Sect. ??, the LMS algorithm computed the approximation to
the Bayes discriminant function for two-layer nets. We now generalize this result in
two ways: to multiple categories and to nonlinear functions implemented by three-
layer neural networks. We use the network of Fig. 6.4 and let gk(x; w) be the output
of the kth output unit — the discriminant function corresponding to category ωk.
Recall first Bayes’ formula,

P (ωk|x) =
P (x|ωk)P (ωk)
c∑

i=1
P (x|ωi)P (ωi)

=
P (x,ωk)

P (x)
, (22)

and the Bayes decision for any pattern x: choose the category ωk having the largest
discriminant function gk(x) = P (ωk|x).

Suppose we train a network having c output units with a target signal according
to:

tk(x) =
{

1 if x ∈ ωk

0 otherwise. (23)

(In practice, teaching values of ±1 are to be preferred, as we shall see in Sect. 6.8; we
use the values 0–1 in this derivation for computational simplicity.) The contribution
to the criterion function based on a single output unit k for finite number of training
samples x is:

J(w) =
∑

x

[gk(x; w)− tk]2 (24)

Top:  images used to train a 64-2-3 network 
Bottom:  the weights associated with each of the two hidden units after  
training. 



Decomposing a learning problem 

Suppose we would like to learn to distinguish between the digits 
‘1’ and ‘5’ 
 
 
 
 
 
 
 
Decompose the digits into small components that characterize 
them. 
 
A ‘1’ should contain features 1 and 2. 
A ‘5’ should contain 3,4,5,6 
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Figure 7.5: Steepest descent versus conjugate gradient descent using 200
examples of the digits data and a 2-layer sigmoidal neural network with 5
hidden units.

Optimization Time
Method 10 sec 1,000 sec 50,000 sec

Steepest Descent 0.043 0.0189 1.2× 10−5

Conjugate Gradients 0.0200 1.13× 10−6 2.73× 10−9

The performance difference is dramatic. !

7.6 Deep Learning: Networks with Many Layers

Universal approximation says that a single hidden layer with enough hidden
units can approximate any target function. But, that may not be a natural
way to represent the target function. Often, many layers more closely mimics
human learning. Let’s get our feet wet with the digit recognition problem to
classify ‘1’ versus ‘5’. A natural first step is to decompose the two digits into
basic components, just as one might break down a face into two eyes, a nose,
a mouth, two ears, etc. Here is one attempt for a prototypical ‘1’ and ‘5’.

φ1 φ2 φ3 φ4 φ5 φ6

c⃝ AM
L Abu-Mostafa, Magdon-Ismail, Lin: Jan-2015 e-Chap:7–36



Constructing a network 

Given the features we can construct a network: 
 
 
 
 
 
 
 
 
 
 
 
 
How do we automate the process? 
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Indeed, we could plausibly argue that every ‘1’ should contain a φ1, φ2 and φ3;
and, every ‘5’ should contain a φ3, φ4, φ5, φ6 and perhaps a little φ1. We have
deliberately used the notation φi which we used earlier for the coordinates of
the feature transform Φ. These basic shapes are features of the input, and, for
example, we would like φ1 to be large (close to 1) if its corresponding feature
is in the input image and small (close to -1) if not.

Exercise 7.17

The basic shape φ3 is in both the ‘1’ and the ‘5’. What other digits do
you expect to contain each basic shape φ1 · · ·φ6. How would you select
additional basic shapes if you wanted to distinguish between all the digits.
(What properties should useful basic shapes satisfy?)

We can build a classifier for ‘1’ versus ‘5’ from these basic shapes. Remember
how, at the beginning of the chapter, we built a complex Boolean function
from the ‘basic’ functions and and or? Let’s mimic that process here. The
complex function we are building is the digit classifier and the basic functions
are our features. Assume, for now, that we have feature functions φi which
compute the presence (+1) or absence (−1) of the corresponding feature. Take
a close look at the following network and work it through from input to output.

,

is it a ‘1’? ✲ ✛ is it a ‘5’?

✻

z1 z5

φ1
φ2 φ3 φ4 φ5 φ6

+ve weight

−ve weight

Ignoring details like the exact values of the weights, node z1 answers the
question “is the image a ‘1’?” and similarly node z5 answers “is the image a
‘5’?” Let’s see why. If they have done their job correctly when we feed in a
‘1’, φ1,φ2,φ3 compute +1, and φ4,φ5,φ6 compute −1. Combining φ1, . . . ,φ6

with the signs of the weights on outgoing edges, all the inputs to z1 will be
positive hence z1 outputs +1; all but one of the inputs into z5 are negative,
hence z5 outputs −1. A similar analysis holds if you feed in the ‘5’. The final

c⃝ AM
L Abu-Mostafa, Magdon-Ismail, Lin: Jan-2015 e-Chap:7–37
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High level 
representation 



Training deep networks 

It is difficult to train very deep networks. 
Alternative:  training layer by layer 
 
 
 
 
 
 
 
 
 
At each step only the weights of a single layer are optimized 
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(a) (b) (c) (d)

Figure 7.6: Greedy deep learning algorithm. (a) First layer weights are
learned. (b) First layer is fixed and second layer weights are learned. (c)
First two layers are fixed and third layer weights are learned. (d) Learned
weights can be used as a starting point to fine-tune the entire network.

7.6.1 A Greedy Deep Learning Algorithm

Historically, the shallow (single hidden layer) neural network was favored over
the deep network because deep networks are hard to train, suffer from many
local minima and, relative to the number of tunable parameters, they have a
very large tendency to overfit (composition of nonlinearities is typically much
more powerful than a linear combination of nonlinearities). Recently, some
simple heuristics have shown good performance empirically and have brought
deep networks back into the limelight. Indeed, the current best algorithm for
digit recognition is a deep neural network trained with such heuristics.

The greedy heuristic has a general form. Learn the first layer weights
W(1) and fix them.13 The output of the first hidden layer is a nonlinear

transformation of the inputs xn → x
(1)
n . These outputs x

(1)
n are used to train

the second layer weights W(2), while keeping the first layer weights fixed. This
is the essence of the greedy algorithm, to ‘greedily’ pick the first layer weights,
fix them, and then move on to the second layer weights. One ignores the
possibility that better first layer weights might exist if one takes into account
what the second layer is doing. The process continues with the outputs x(2)

used to learn the weights W(3), and so on.

13Recall that we use the superscript (·)(ℓ) to denote the layer ℓ.

c⃝ AM
L Abu-Mostafa, Magdon-Ismail, Lin: Jan-2015 e-Chap:7–39



Training deep networks 
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(a) (b) (c) (d)

Figure 7.6: Greedy deep learning algorithm. (a) First layer weights are
learned. (b) First layer is fixed and second layer weights are learned. (c)
First two layers are fixed and third layer weights are learned. (d) Learned
weights can be used as a starting point to fine-tune the entire network.

7.6.1 A Greedy Deep Learning Algorithm

Historically, the shallow (single hidden layer) neural network was favored over
the deep network because deep networks are hard to train, suffer from many
local minima and, relative to the number of tunable parameters, they have a
very large tendency to overfit (composition of nonlinearities is typically much
more powerful than a linear combination of nonlinearities). Recently, some
simple heuristics have shown good performance empirically and have brought
deep networks back into the limelight. Indeed, the current best algorithm for
digit recognition is a deep neural network trained with such heuristics.

The greedy heuristic has a general form. Learn the first layer weights
W(1) and fix them.13 The output of the first hidden layer is a nonlinear

transformation of the inputs xn → x
(1)
n . These outputs x

(1)
n are used to train

the second layer weights W(2), while keeping the first layer weights fixed. This
is the essence of the greedy algorithm, to ‘greedily’ pick the first layer weights,
fix them, and then move on to the second layer weights. One ignores the
possibility that better first layer weights might exist if one takes into account
what the second layer is doing. The process continues with the outputs x(2)

used to learn the weights W(3), and so on.

13Recall that we use the superscript (·)(ℓ) to denote the layer ℓ.
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Greedy Deep Learning Algorithm:

1: for ℓ = 1, . . . , L do
2: W(1) · · ·W(ℓ−1) are given from previous iterations.

3: Compute layer ℓ− 1 outputs x
(ℓ−1)
n for n = 1, . . . , N .

4: Use {x(ℓ−1)
n } to learn weights Wℓ by training a single

hidden layer neural network. (W(1) · · ·W(ℓ−1) are fixed.)

output

x
(ℓ−1)
n , n = 1, . . . , N

W(ℓ)

V
hidden layer

error measure

We have to clarify step 4 in the algorithm. The weights W(ℓ) and V are
learned, though V is not needed in the algorithm. To learn the weights, we
minimize an error (which will depend on the output of the network), and that
error is not yet defined. To define the error, we must first define the output
and then how to compute the error from the output.

Unsupervised Auto-encoder. One approach is to take to heart the notion
that the hidden layer gives a high-level representation of the inputs. That is,
we should be able to reconstruct all the important aspects of the input from
the hidden layer output . A natural test is to reconstruct the input itself: the
output will be x̂n, a prediction of the input xn; and, the error is the difference
between the two. For example, using squared error,

en = ∥x̂n − xn∥2.

When all is said and done, we obtain the weights without using the targets
yn and the hidden layer gives an encoding of the inputs, hence the name
unsupervised auto-encoder. This is reminiscent of the radial basis function
network in Chapter 6, where we used an unsupervised technique to learn the
centers of the basis functions, which provided a representative set of inputs
as the centers. Here, we go one step further and dissect the input-space itself
into pieces that are representative of the learning problem. At the end, the
targets have to be brought back into the picture (usually in the output layer).

Supervised Deep Network. The previous approach adheres to the philo-
sophical goal that the hidden layers provide an ‘intelligent’ hierarchical rep-
resentation of the inputs. A more direct approach is to train the two-layer
network on the targets. In this case the output is the predicted target ŷn and
the error measure en(yn, ŷn) would be computed in the usual way (for example
squared error, cross entropy error, etc.).

c⃝ AM
L Abu-Mostafa, Magdon-Ismail, Lin: Jan-2015 e-Chap:7–40



Deep networks for the 1 vs 5 problem 

Features learned using a network with 3 layers with 6,2,1 
neurons per layer (digits are 16x16 pixels) 
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In practice, there is no verdict on which method is better, with the unsu-
pervised auto-encoder camp being slightly more crowded than the supervised
camp. Try them both and see what works for your problem, that’s usually
the best way. Once you have your error measure, you just reach into your
optimization toolbox and minimize the error using your favorite method (gra-
dient descent, stochastic gradient descent, conjugate gradient descent, . . . ). A
common tactic is to use the unsupervised auto-encoder first to set the weights
and then fine tune the whole network using supervised learning. The idea is
that the unsupervised pass gets you to the right local minimum of the full
network. But, no matter which camp you belong to, you still need to choose
the architecture of the deep network (number of hidden layers and their sizes),
and there is no magic potion for that. You will need to resort to old tricks
like validation, or a deep understanding of the problem (our hand made
network for the ‘1’ versus ‘5’ task suggests a deep network with six hidden
nodes in the first hidden layer and two in the second).

Exercise 7.19

Previously, for our digit problem, we used symmetry and intensity. How do
these features relate to deep networks? Do we still need them?

Example 7.5. Deep Learning For Digit Recognition. Let’s revisit the
digits classification problem ‘1’ versus ‘5’ using a deep network architecture

[d(0), d(1), d(2), d(3)] = [256, 6, 2, 1].

(The same architecture we constructed by hand earlier, with 16 × 16 input
pixels and 1 output.) We will use gradient descent to train the two layer
networks in the greedy algorithm. A convenient matrix form for the gradient
of the two layer network is given in Problem 7.7. For the unsupervised auto-
encoder the target output is the input matrix X. for the supervised deep
network, the target output is just the target vector y. We used the supervised
approach with 1,000,000 gradient descent iterations for each supervised greedy
step using a sample of 1500 examples from the digits data. Here is a look at
what the 6 hidden units in the first hidden layer learned. For each hidden
node in the first hidden layer, we show the pixels corresponding to the top 20
incoming weights.

φ1 φ2 φ3 φ4 φ5 φ6

c⃝ AM
L Abu-Mostafa, Magdon-Ismail, Lin: Jan-2015 e-Chap:7–41



So have we solved image classification? 

Not yet! 
 
The datasets we we looked at were just too easy. 
 
Small images where the digit was centered. 
 
As the images become larger, the network needs to have more 
and more parameters. 
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The invariance problem 

Our perceptual system is very good at dealing with invariances 
■  translation, rotation, scaling 
■  deformation, contrast, lighting, rate 

We are so good at this that it’s hard to appreciate how difficult 
it is. 
■  Dealing with invariances is one of the main difficulties in making 

computers solve perceptual problems. 

Image from https://grey.colorado.edu/CompCogNeuro/index.php/CCNBook/Perception 



How to make a classifier invariant 

Potential solution:  Introduce transformed variants of the data. 
With sufficient training data the network can learn the 
invariances by itself. 
 
Alternatives: 
v  Construct features that have the required invariances 
v  Build the invariances into the model 
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The human visual system 

The human visual system performs image processing at 
increasing levels of abstraction 

14 Image from https://grey.colorado.edu/CompCogNeuro/index.php/CCNBook/Perception 



NN architectures inspired by the brain 

For image classification researchers have been exploring 
architectures that are motivated by the working of the visual 
system. 

15 
http://www.scholarpedia.org/article/Neocognitron 

The architecture of the Neocognitron (Fukushima, 1980) 



convolutional networks 

The LeNet-5 network: 
 
 
 
 
 
 
Important ideas: 
Local features that are useful in one region are likely to be 
useful elsewhere (weight sharing) 
Extract local features (local receptive fields) and combine them 
to create global features at a more abstract level 
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Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied to  
document recognition. Proceedings of the IEEE, november 1998. 

http://yann.lecun.com/exdb/lenet/ 



convolution 

17 
Image from http://ufldl.stanford.edu/tutorial/supervised/FeatureExtractionUsingConvolution/ 

Move a 3x3 receptive field over an image, extracting local 
features at each position 
 

1  0  1
0  1  0
1  0  1

The matrix associated  
with the receptive field 
(feature extractor): 



pooling 

Once local features are computed using convolution, they are 
merged by pooling:  combining all the convolved values into a 
much smaller set (usually just a maximum). 

18 
Image from http://ufldl.stanford.edu/tutorial/supervised/Pooling/ 

Max pooling with a 2x2 filter and stride = 2 



pooling 

Once local features are computed using convolution, they are 
merged by pooling:  combining all the convolved values into a 
much smaller set (usually just a maximum). 

19 
Image from http://ufldl.stanford.edu/tutorial/supervised/Pooling/ 



pooling 

Pooling is a way of achieving invariance. 

20 
Image from http://ufldl.stanford.edu/tutorial/supervised/Pooling/ 



Convolutional networks 

Let’s put all the elements together: 
 
 
 
 
 
 
 
 
 
Can have multiple convolution/pooling layers 
and multiple classification layers 
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Training convolutional networks 

Guess what:  backpropagation. 
 
 
 
 
 
 
 
 
Need to modify the equations to model convolution/pooling 
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current optimization methods 

ü  AdaGrad:  Duchi, John; Hazan, Elad; Singer, Yoram. "Adaptive 
subgradient methods for online learning and stochastic 
optimization". JMLR. 12: 2121–2159, 2011. 

ü  RMSProp 
ü  Adam:  Kingma, Diederik P., and Jimmy Ba. "Adam: A method 

for stochastic optimization." ICLR, 2015. 
ü  Review:  Ruder, Sebastian. "An overview of gradient descent 

optimization algorithms." arXiv preprint arXiv:1609.04747 
(2016). http://ruder.io/optimizing-gradient-descent/ 

ü  Bottom line:  Adam is a standard approach; often a good idea 
to compare to SGD+Nesterov momentum 
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convolutional networks 

CNNs can be applied to variable-sized inputs 
 
Provide state-of-the-art performance in several domains: 
 
v  Object recognition in images 
v  Natural language processing (1d convolution) 
v  Speech processing (1d convolution) 

Also being applied in computational biology. 

Issues:  require lots of training data for good performance. 
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auto-encoders 

A framework for learning features in an unsupervised manner. 
The idea:  reconstruct the input using features computed by the 
hidden layer. 
 
 
 
 
 
 
 
 
 
Want to learn a function h such that:   
The reconstruction error: 

25 

input
layer

hidden
layer

output
layer

encoding decoding

auto-encoder

receptive 
fields

convolutional
layer

pooling
layer

convolutional
network

classification
layer

en = ||x̂n � xn||2
hw(x) ⇡ x



auto-encoders 

When trained effectively, auto-encoders learn interesting 
features that characterize the input 
 
 
 
 
 
 
 
 
 
 
At the end, use the encoding function as features for 
supervised learning. 
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auto-encoders 

When trained effectively, auto-encoders learn interesting 
features that characterize the input 
 
 
 
 
 
 
 
 
 
 
Since there are less neurons in the hidden layer, the network is 
forced to learn a compressed version of the input. 
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auto-encoders 

When trained effectively, auto-encoders learn interesting 
features that characterize the input 
 
 
 
 
 
 
 
 
 
 
Can also achieve that by adding a sparsity-inducing penalty to 
the neural network error function. 
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auto-encoders 

When trained effectively, auto-encoders learn interesting 
features that characterize the input 
 
 
 
 
 
 
 
 
 
 
Stacked auto-encoders:  multiple layers, trained by the greedy 
layer-wise training algorithm 
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 denoising auto-encoders 

Learn to reconstruct a corrupted version of the input 
Intuition:  introduces robustness into the learned 
representation. 
 
 
 
 
 
 
x is corrupted; the autoencoder maps it to y, and attempts to 
reconstruct x 
  
Note:  corruption introduced only in training 
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Vincent, Pascal, et al. "Extracting and composing robust features with denoising autoencoders."  
Proceedings of the 25th international conference on Machine learning. ACM, 2008. 

Figure 1: An example x is corrupted to x̃. The autoencoder then maps it to y

and attempts to reconstruct x.
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Note that if x is a binary vector, LIH(x, z) is a negative log-likelihood for the
example x, given the Bernoulli parameters z. Equation 1 with L = LIH can be
written

✓

?
, ✓

0? = arg min
✓,✓0

EEq0(X) [LIH (X, g✓0(f✓(X)))] (3)

where q

0(X) denotes the empirical distribution associated to our n training
inputs. This optimization will typically be carried out by stochastic gradient
descent.

2.3 The Denoising Autoencoder

To test our hypothesis and enforce robustness to partially destroyed inputs we
modify the basic autoencoder we just described. We will now train it to recon-
struct a clean “repaired” input from a corrupted, partially destroyed one. This
is done by first corrupting the initial input x to get a partially destroyed ver-
sion x̃ by means of a stochastic mapping x̃ ⇠ qD(x̃|x). In our experiments, we
considered the following corrupting process, parameterized by the desired pro-
portion ⌫ of “destruction”: for each input x, a fixed number ⌫d of components
are chosen at random, and their value is forced to 0, while the others are left
untouched. The procedure can be viewed as replacing a component considered
missing by a default value, which is a common technique. A motivation for
zeroing the destroyed components is that it simulates the removal of these com-
ponents from the input. For images on a white (0) background, this corresponds
to “salt noise”. Note that alternative corrupting noises could be considered1.
The corrupted input x̃ is then mapped, as with the basic autoencoder, to a
hidden representation y = f✓(x̃) = s(Wx̃ + b) from which we reconstruct a
z = g✓0(y) = s(W0

y + b

0) (see figure 1 for a schematic representation of the
process). As before the parameters are trained to minimize the average recon-
struction error LIH(x, z) = IH(B

x

kB
z

) over a training set, i.e. to have z as close
as possible to the uncorrupted input x. But the key di↵erence is that z is now
a deterministic function of x̃ rather than x and thus the result of a stochastic
mapping of x.

Let us define the joint distribution

q

0(X,

e
X,Y ) = q

0(X)qD( e
X|X)�f

✓

( eX)(Y ) (4)
1
the approach we describe and our analysis is not specific to a particular kind of corrupting

noise.

4

corrupt 

map reconstruct 



auto-encoders and CNNs 

The ideas of auto-encoders and convolutional networks can be 
combined:  convolutional auto-encoders 
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Masci, Jonathan, Ueli Meier, Dan Cireşan, and Jürgen Schmidhuber.  
"Stacked convolutional auto-encoders for hierarchical feature extraction."  
In Artificial Neural Networks and Machine Learning–ICANN 2011, pp. 52-59, 2011. 

Makhzani, Alireza, and Brendan Frey. "A Winner-Take-All Method for Training Sparse  
Convolutional Autoencoders.”  Accepted, NIPS 2015. 

(a) MNIST, 10% (b) MNIST, 5% (c) MNIST, 2%

Figure 1: Learnt dictionary (decoder) of FC-WTA with 1000 hidden units trained on MNIST

Sparse coding algorithms typically comprise two steps: a highly non-linear sparse encoding oper-
ation that finds the “right” atoms in the dictionary, and a linear decoding stage that reconstructs
the input with the selected atoms and update the dictionary. The FC-WTA autoencoder is a non-
symmetric autoencoder where the encoding stage is typically a stack of several ReLU layers and
the decoder is just a linear layer. In the feedforward phase, after computing the hidden codes of
the last layer of the encoder, rather than reconstructing the input from all of the hidden units, for
each hidden unit, we impose a lifetime sparsity by keeping the k percent largest activation of that
hidden unit across the mini-batch samples and setting the rest of activations of that hidden unit to
zero. In the backpropagation phase, we only backpropagate the error through the k percent non-zero
activations. In other words, we are using the min-batch statistics to approximate the statistics of
the activation of a particular hidden unit across all the samples, and finding a hard threshold value
for which we can achieve k% lifetime sparsity rate. In this setting, the highly nonlinear encoder of
the network (ReLUs followed by top-k sparsity) learns to do sparse encoding, and the decoder of
the network reconstructs the input linearly. At test time, we turn off the sparsity constraint and the
output of the deep ReLU network will be the final representation of the input. In order to train a
stacked FC-WTA autoencoder, we fix the weights and train another FC-WTA autoencoder on top of
the fixed representation of the previous network.

The learnt dictionary of a FC-WTA autoencoder trained on MNIST, CIFAR-10 and Toronto Face
datasets are visualized in Fig. 1 and Fig 2. For large sparsity levels, the algorithm tends to learn
very local features that are too primitive to be used for classification (Fig. 1a). As we decrease
the sparsity level, the network learns more useful features (longer digit strokes) and achieves better
classification (Fig. 1b). Nevertheless, forcing too much sparsity results in features that are too global
and do not factor the input into parts (Fig. 1c). Section 4.1 reports the classification results.

Winner-Take-All RBMs. Besides autoencoders, WTA activations can also be used in Restricted
BoltzmannMachines (RBM) to learn sparse representations. Supposeh and v denote the hidden and
visible units of RBMs. For training WTA-RBMs, in the positive phase of the contrastive divergence,
instead of sampling from P (hi|v), we first keep the k% largest P (hi|v) for each hi across the
mini-batch dimension and set the rest of P (hi|v) values to zero, and then sample hi according to
the sparsified P (hi|v). Filters of a WTA-RBM trained on MNIST are visualized in Fig. 3. We
can see WTA-RBMs learn longer digit strokes on MNIST, which as will be shown in Section 4.1,
improves the classification rate. Note that the sparsity rate of WTA-RBMs (e.g., 30%) should not be
as aggressive as WTA autoencoders (e.g., 5%), since RBMs are already being regularized by having
binary hidden states.

(a) Toronto Face Dataset (48× 48) (b) CIFAR-10 Patches (11× 11)

Figure 2: Dictionaries (decoder) of FC-WTA autoencoder with 256 hidden units and sparsity of 5%
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speeding up deep networks 

Deep networks are computationally expensive to train 
 
GPUs to the rescue: 
 
Designed to speed up the computations performed in video 
games:  conversion of a 3-d specification to what should be 
displayed on the screen. 
They handle simple computations without much branching and 
process large memory buffers in parallel.   
Exactly what’s needed for deep networks! 
 
NVIDIA:  general purpose GPUs - C-like programming using 
CUDA.  But still not easy to program. 
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speeding up deep networks 

Alternative to GPUs:  parallelism using asynchronous stochastic 
gradient descent 
 
SparkNet:  Use Spark (MapReduce-like framework) to 
distribute the computation  
 
 
 
 

33 http://papers.nips.cc/paper/4390-hogwild-a-lock-free-approach-to-parallelizing-stochastic-gradient-descent 

http://papers.nips.cc/paper/4687-large-scale-distributed-deep-networks 

https://github.com/amplab/SparkNet 
 

SparkNet: Training Deep Networks in Spark 



From GPUs to TPUs 

Google has recently unveiled a chip that is specifically designed 
for the tensor operations that are used in machine learning. 
 
Idea:  let’s sacrifice precision for speed! 
 
Claims to be an order of magnitude faster for ml applications. 
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https://cloud.google.com/tpu/ 



Deep learning software 

Theano. 
v  allows you to define, optimize, and evaluate mathematical 

expressions involving multi-dimensional arrays efficiently.  
v  tight integration with numpy 
v  transparent use of GPUs 
v  efficient symbolic differentiation  
v  dynamic C code generation 
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http://deeplearning.net/software/theano/ 



Deep learning software 

TensorFlow (google) 
 
 
 
 
 
PyTorch (facebook) 
 
 
 
 
Similar features to Theano 
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Deep learning resources 

See: 
http://deeplearning.net 
http://www.deeplearningbook.org/ 
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http://www.kdnuggets.com/2015/07/cartoon-humans-ahead-
deep-learning.html 


