
Features:  representation, normalization, 
selection 

Chapter e-9 
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features 

v  Distinguish between instances (e.g. an image that you need to 
classify), and the features you create for an instance. 

v  Features are the workhorses of machine learning:  the quality 
of a classifier is crucially dependent on the features used to 
represent the domain. 

v  Although many datasets come with pre-defined features, 
they can be manipulated in many ways 
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features 

v  Distinguish between instances (e.g. an image that you need to 
classify), and the features you create for an instance. 

v  Features are the workhorses of machine learning:  the quality 
of a classifier is crucially dependent on the features used to 
represent the domain. 

v  Although many datasets come with pre-defined features, 
they can be manipulated in many ways 
v  Normalization or other transformations 
v  Discretization 
v  Select the best features 
v  Combine features to compute new ones (feature construction) 
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types of features 

Quantitative (continuous) features:  have a meaningful numerical 
scale 
■  Examples:  age, height etc. 

 
Ordinal features:  have an ordering 
■  Example:  house number 

Categorical (discrete/nominal) features:  not meaningful to 
describe them using mean, median 
v  Example:  Boolean features   
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features and classifiers 

Some classifiers require quantitative features (all the 
classifiers we’ve seen so far). 
 
Need to transform an ordinal/categorical feature into a 
quantitative feature. 
 
Assume we have a feature with possible values “red”, “blue”, 
“green”. 
How would we transform this into one or more quantitative 
features? 
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features and classifiers 

Some classifiers require quantitative features (all the 
classifiers we’ve seen so far). 
 
Need to transform an ordinal/categorical feature into a 
quantitative feature. 
 
Assume we have a feature with possible values “red”, “blue”, 
“green”. 
How would we transform this into one or more quantitative 
features? 
 
Use one-of-c coding 
 

6 



features and classifiers 

Some classifiers treat categorical and quantitative features 
differently. 
 
Examples:  Naïve Bayes, decision trees 
 
Sometimes useful to use categorical features even if the 
underlying data is quantitative. 
Solution:  discretization 
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feature transformations 

Aim:  improve the utility of our features by changing them in 
some way. 
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scaling 

Feature scaling:  neutralize the effect of different scales 
across features (geometric classifiers are sensitive to that). 
v  Centering 
v  Standardization 
v  Scaling to [0,1] 
Instance scaling:  scale a feature vector to have unit norm.  
Appropriate for sparse data. 
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centering 

The geometry of centering: 
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standardizing 

The geometry of standardizing: 
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whitening 

Whitening:  transforming the data so that features are not 
correlated. 
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missing data 

In many cases an instance may be incomplete, i.e. some feature 
values will be missing. 
 
Decision tree models and some probabilistic models can handle 
this well.   
 
Geometric models (SVM, KNN) need all features to be specified. 
Solution:  fill in missing values (imputation). 
Simple solution:  use the mean 
More sophisticated:  build a predictive model 
 
Complications:  the fact that the feature is missing might be 
correlated with the label 
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feature selection and construction 

Distinguish between 
Feature selection:  select a subset of features that allow a 
classifier to maintain or increase its performance. 
Feature construction:  construct new features that are a linear/
non-linear combinations of the original features. 
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feature selection 

Why do feature selection?  
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feature selection 

Why do feature selection?  
v  Better understanding of the data and the classification rule.  
v  Expensive to compute/measure all features  
v  Improve classifier performance: some machine learning 

algorithms, are known to degrade in performance when faced 
with many irrelevant/noisy features 
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the curse of dimensionality 

A fixed number of data points sparsely populates a space as its 
dimensionality increases. 
 
In other words:  the number of data points required for 
populating the space with equal density grows exponentially with 
dimension. 
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the curse of dimensionality 

The VC dimension of a linear classifier in d dimensions is equal 
to d+1 
 
As a consequence, our ability to fit the data increases with 
increasing dimensionality. 
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feature selection 

Objective:  find a subset of the original features, such that a 
classifier that is run on data containing only these features 
generates a classifier with the highest possible accuracy.  
 
Feature selection can lead to improved performance.  
This depends on the classifier used: this is definitely the case 
for KNN or naive Bayes classifiers, but not necessarily the case 
for SVMs/neural networks.  
 
Comment:  Relevance does not imply that a feature should be in 
an optimal feature subset (redundancy) 
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approaches 

Filter. Features or groups of features are scored by some 
measure of relation with the labels. Examples of scoring 
functions include Pearson correlation between a feature and the 
labels, Fisher scores, or mutual information.  
Wrapper.  Uses the classifier to guide the process of selection. 
A feature subset is typically evaluated using CV.  
Embedded. The selection method uses properties of the 
classifier.  
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filter methods 

v  Pearson correlation of a feature with the labels 
v  ROC score of a feature 
v  Difference in a feature’s mean across classes: 

 the Golub score: 
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Figure 3: A variable useless by itself can be useful together with others. (a) One variable has
completely overlapping class conditional densities. Still, using it jointly with the other variable
improves class separability compared to using the other variable alone. (b) XOR-like or chessboard-
like problems. The classes consist of disjoint clumps such that in projection on the axes the class
conditional densities overlap perfectly. Therefore, individual variables have no separation power.
Still, taken together, the variables provide good class separability .

4 Variable Subset Selection

In the previous section, we presented examples that illustrate the usefulness of selecting subsets
of variables that together have good predictive power, as opposed to ranking variables according
to their individual predictive power. We now turn to this problem and outline the main directions
that have been taken to tackle it. They essentially divide into wrappers, filters, and embedded
methods. Wrappers utilize the learning machine of interest as a black box to score subsets of
variable according to their predictive power. Filters select subsets of variables as a pre-processing
step, independently of the chosen predictor. Embedded methods perform variable selection in the
process of training and are usually specific to given learning machines.

4.1 Wrappers and Embedded Methods

The wrapper methodology, recently popularized by Kohavi and John (1997), offers a simple and
powerful way to address the problem of variable selection, regardless of the chosen learning ma-
chine. In fact, the learning machine is considered a perfect black box and the method lends itself
to the use of off-the-shelf machine learning software packages. In its most general formulation, the
wrapper methodology consists in using the prediction performance of a given learning machine to
assess the relative usefulness of subsets of variables. In practice, one needs to define: (i) how to
search the space of all possible variable subsets; (ii) how to assess the prediction performance of
a learning machine to guide the search and halt it; and (iii) which predictor to use. An exhaustive
search can conceivably be performed, if the number of variables is not too large. But, the problem
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potential drawbacks of filter methods 

Consider the following data: 
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of variables that together have good predictive power, as opposed to ranking variables according
to their individual predictive power. We now turn to this problem and outline the main directions
that have been taken to tackle it. They essentially divide into wrappers, filters, and embedded
methods. Wrappers utilize the learning machine of interest as a black box to score subsets of
variable according to their predictive power. Filters select subsets of variables as a pre-processing
step, independently of the chosen predictor. Embedded methods perform variable selection in the
process of training and are usually specific to given learning machines.

4.1 Wrappers and Embedded Methods

The wrapper methodology, recently popularized by Kohavi and John (1997), offers a simple and
powerful way to address the problem of variable selection, regardless of the chosen learning ma-
chine. In fact, the learning machine is considered a perfect black box and the method lends itself
to the use of off-the-shelf machine learning software packages. In its most general formulation, the
wrapper methodology consists in using the prediction performance of a given learning machine to
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Figure from: An Introduction to Variable and Feature Selection 
Isabelle Guyon, André Elisseeff; 3(Mar):1157-1182, 2003.  



how many features to select? 

Drawbacks of filter methods? 
 
How to decide on how many features?  
 
v  Decide ahead of time. 
v  Use CV.  
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wrapper methods 

Iteratively add features (forward selection) or eliminate them 
(backward elimination) 
 
Use cross validation to guide feature inclusion/removal: 
Rank features by how much they add to accuracy, or by how 
much accuracy decreases by their removal. 
 
This is a greedy approach. 
How many runs of cross-validation do we need to run on a 
dataset with d features? 
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The idea of wrappers for feature selection comes from:  
Wrappers for feature subset selection. Ron Kohavi and George H. John, 1997 



embedded methods 

We have seen that the magnitude of the weight vector of a 
linear classifier can be used as a measure if feature importance. 
 
Recursive Feature Elimination (RFE): 
Alternate between training an SVM and removing the feature 
with the lowest magnitude of the weight vector. 
 
For high dimensional datasets you can remove a fraction of the 
features at each iteration 
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Gene selection for cancer classification using support vector machines. 
I. Guyon, J. Weston, S. Barnhill, and V. Vapnik.  
Machine Learning, Vol. 46, pp. 389—422, 2002  



embedded methods 

We have seen that the magnitude of the weight vector of a 
linear classifier can be used as a measure if feature importance. 
 
Recursive Feature Elimination (RFE): 
Alternate between training an SVM and removing the feature 
with the lowest magnitude of the weight vector. 
 
Inspired by LeCun’s “Optimal brain damage” weight pruning 
technique used in neural networks. 
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Gene selection for cancer classification using support vector machines. 
I. Guyon, J. Weston, S. Barnhill, and V. Vapnik.  
Machine Learning, Vol. 46, pp. 389—422, 2002  



which type of methods should I use? 

The wrapper and embedded approaches take into account the 
heuristics and biases of the classifier that will ultimately be 
used, and thus can potentially generate better feature subsets.  
Filter methods are less likely to suffer from overfitting. 
 
So ultimately, it depends on the data.  
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bias in feature selection 

The wrong way to evaluate feature selection: 
 
Perform feature selection on the whole dataset and then run 
cross-validation. 
 
Why is this wrong? 
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bias in feature selection 

The wrong way to evaluate feature selection: 
 
Perform feature selection on the whole dataset and then run 
cross-validation. 
 
The right way: 
 
Perform feature selection using training data only. 
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Feature selection in scikit-learn 

Feature selection methods: 
v  RFE 
v  Filter methods 

Support proper experiment design 
 
Show a demo! 
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