
Principal Components Analysis 
(PCA) 

Chapter e-9 
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Motivation 

Principal components:  new features constructed as linear 
combinations of the given features. 
 
Choose combinations of features that achieve high variance. 

2 

Principal Components Analysis

Original Data

−−−−−−→

Rotated Data

Rotate the data so that it is easy to
Identify the dominant directions (information)

Throw away the smaller dimensions (noise)

[
x1
x2

]
→

[
z1
z2

]
→

[
z1
]

c⃝ AML Creator: Malik Magdon-Ismail Learning Aides: 11 /16 Projecting the data −→

Principal Components Analysis

Original Data

−−−−−−→

Rotated Data

Rotate the data so that it is easy to
Identify the dominant directions (information)

Throw away the smaller dimensions (noise)

[
x1
x2

]
→

[
z1
z2

]
→

[
z1
]

c⃝ AML Creator: Malik Magdon-Ismail Learning Aides: 11 /16 Projecting the data −→



Motivation 

Principal components:  new features constructed as linear 
combinations of the given features. 
 
Choose combinations of features that achieve high variance. 

3 

e
-C

H
A
P
T
E
R

e-9. Learning Aides 9.2. Dimension Reduction and Feature Selection

k

%
R

ec
on

st
ru

ct
io

n
E

rr
or

0 50 100 150 200
0

20

40

60

80

100

z1

z 2

1
not 1

(a) Reconstruction error (b) Top-2 PCA-features

Figure 9.2: PCA on the digits data. (a) Shows how the reconstruction
error depends on the number of components k; about 150 features suffice to
reconstruct the data almost perfectly. If all principal components are equally
important, the reconstruction error would decrease linearly with k, which is
not the case here. (b) Shows the two features obtained using the top two
principal components. These features look as good as our hand-constructed
features of symmetry and intensity from Example 3.5 in Chapter 3.

contain only the top-k singular vectors, and Γk the top-k singular values. The
reconstructed matrix is

X̂ = XVkV
t

k = UkΓkV
t

k.

By the Eckart-Young theorem, X̂ is the best rank-k approximation to X. Let’s
look at how the reconstruction error depends on k, the number of features used.
To do this, we plot the reconstruction error using k principle components as
a percentage of the reconstruction error with zero components. With zero
components, the reconstruction error is just ∥X∥2F . The result is shown in
Figure 9.2(a). As can be seen, with just 50 components, the reconstruction
error is about 10%. This is a rule of thumb to determine how many components
to use: choose k to obtain a reconstruction error of less than 10%. This
amounts to treating the bottom 10% of the fluctuations in the data as noise.

Let’s reduce the dimensionality to 2 by projecting onto the top two prin-
cipal components in V2. The resulting features are shown in Figure 9.2(b).
These features can be compared to the features obtained using intensity and
symmetry in Example 3.5 on page 106. The features appear to be quite good,
and suitable for solving this learning problem. Unlike the size and intensity
features which we used in Example 3.5, the biggest advantage of these PCA
features is that their construction is fully automated – you don’t need to know
anything about the digit recognition problem to obtain them. This is also their
biggest disadvantage – the features are provably good at reconstructing the
input data, but there is no guarantee that they will be useful for solving the
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Pre-processing 

v  Center the data 
v  Standardize if features have different scales 
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First principal component 

Look for a direction v that maximizes the variance of  
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Projecting the Data to Maximize Variance

(Always center the data first)

z = xt

nv

vOriginal Data

Find v to maximize the variance of z
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Maximizing the Variance
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First principal component 

Objective: 
 
 
 
Use the Lagrange multipliers method with 
 
 
Taking derivative with respect to v and setting to zero gives: 
 
 
I.e. v is an eigenvector of the covariance matrix. 
Which one should we choose? 
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maximize v|
⌃v

such that v|v = 1

⇤(v) = v|⌃v + �(1� v|v)

⌃v = �v



Principal components 

Solution is an eigenvector of the covariance matrix: 
 
 
Since the covariance matrix is symmetric, it has real 
eigenvalues, and the eigenvectors form a basis. 
 
Therefore, if we want k directions, choose the k eigenvectors 
with the largest eigenvalues. 
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Coordinate systems 

Coordinate system:  an orthonormal basis. 
 
Our standard Euclidean basis: 
where ui is a unit vector with a single non-zero coefficient 
 
Expressing x in terms of our basis: 
 
 
 
Can do that in terms of the principal components: 
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u1, . . . ,ud

x =
dX

i=1

xiui =
dX

i=1

(x|
ui)ui

The Principal Components

z1 = xtv1

z2 = xtv2

z3 = xtv3
...

v1,v2, · · · ,vd are the eigenvectors of Σ with eigenvalues λ1 ≥ λ2 ≥ · · · ≥ λd

Theorem [Eckart-Young]. These directions give best re-
construction of data; also capture maximum variance.

vOriginal Data
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Principal components 

To represent xi in the basis of the principal components: 
 
 
 
 
 
zi is a k-dimensional vector; xi is d-dimensional 
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Alternative interpretation 

PCA can also be derived as the basis that minimizes the 
reconstruction error arising from projecting the data onto 
a k-dimensional subspace. 
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Reconstruction error 

If we kept all the PCs: 
 
 
 
The reconstructed vector using k PCs: 
 
 
 
The reconstruction error: 
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x =
dX

i=1

zivi

x̂ =
kX

i=1

zivi

||x� x̂||2 = ||
dX

i=k+1

zivi||2 =
dX

i=k+1

z2i



Computing principal components using SVD 

SVD:  singular value decomposition 
Any n x d matrix X can be expressed as: 
 
 
Where: 
U : n x d matrix (orthonormal columns) 
V : d x d matrix (orthonormal columns) 
Γ : d x d matrix (diagonal) 
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X = U�V |

   X 
(n x d) 

=    U 
(n x d) 

    Γ  
(d x d)  

    VT 
(d x d)  



Computing principal components using SVD 

SVD:  singular value decomposition 
Any n x d matrix X can be expressed as: 
 
 
Relationship to the scatter/covariance matrix: 
 
 
 
 
I.e., the matrix V we obtain from SVD is the matrix of 
eigenvectors of the covariance matrix. 
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⌃ = X|X = (U�V |)|(U�V |)

= (V �U|)|U�V | = V �2V |

X = U�V |



PCA for the digits data 

 
 
 
 
 
 
 
 
 
 
 
How to choose the number of principal components? 
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Figure 9.2: PCA on the digits data. (a) Shows how the reconstruction
error depends on the number of components k; about 150 features suffice to
reconstruct the data almost perfectly. If all principal components are equally
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not the case here. (b) Shows the two features obtained using the top two
principal components. These features look as good as our hand-constructed
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By the Eckart-Young theorem, X̂ is the best rank-k approximation to X. Let’s
look at how the reconstruction error depends on k, the number of features used.
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a percentage of the reconstruction error with zero components. With zero
components, the reconstruction error is just ∥X∥2F . The result is shown in
Figure 9.2(a). As can be seen, with just 50 components, the reconstruction
error is about 10%. This is a rule of thumb to determine how many components
to use: choose k to obtain a reconstruction error of less than 10%. This
amounts to treating the bottom 10% of the fluctuations in the data as noise.

Let’s reduce the dimensionality to 2 by projecting onto the top two prin-
cipal components in V2. The resulting features are shown in Figure 9.2(b).
These features can be compared to the features obtained using intensity and
symmetry in Example 3.5 on page 106. The features appear to be quite good,
and suitable for solving this learning problem. Unlike the size and intensity
features which we used in Example 3.5, the biggest advantage of these PCA
features is that their construction is fully automated – you don’t need to know
anything about the digit recognition problem to obtain them. This is also their
biggest disadvantage – the features are provably good at reconstructing the
input data, but there is no guarantee that they will be useful for solving the
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Nonlinear PCA 

 
 
 
 
 
 
 
 
 
 
Linear PCA won’t work here. 
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(a) Data in X space (b) Top-1 PCA reconstruction

Figure 9.3: (a) The data in X space does not ‘live’ in a lower dimensional
linear manifold. (b) The reconstructed data using top-1 PCA data must lie
on a line and therefore cannot accurately represent the original data.

2. Do the bottom principal components contain primarily small random fluc-
tuations that correspond to noise and should be thrown away? The fact
that they are small can be determined by looking at the reconstruction
error. The fact that they are noise is not much more than a guess.

3. Does the target function f depend primarily on the top principal compo-
nents, or are the small fluctuations in the bottom principal components key
in determining the value of f? If the latter, then PCA will not help the
machine learning task. In practice, it is difficult to determine whether this
is true (without snooping ). A validation method can help determine
whether to use PCA-dimension-reduction or not. Usually, throwing away
the lowest principal components does not throw away significant informa-
tion related to the target function, and what little it does throw away is
made up for in the reduced generalization error bar because of the lower
dimension.

Clearly, PCA will not work for our data in Figure 9.3. However, we are not
dead yet. We have an ace up our sleeve, namely the all-powerful nonlinear
transform. Looking at the data in Figure 9.3 suggests that the angular co-
ordinate is important. So, lets consider a transform to the nonlinear feature
space defined by polar coordinates.

[

x1

x2

]

Φ−→
[

r
θ

]

=

[√

x2
1 + x2

2

tan−1(x2
x1
)

]

The data using polar-coordinates is shown in Figure 9.4(a). In this space, the
data clearly lie on a linear subspace, appropriate for PCA. The top-1 PCA
reconstructed data (in the nonlinear feature space) is shown in Figure 9.4(b).
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Nonlinear PCA 
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(a) Transformed data in Z space (b) Reconstruction in Z space

Figure 9.4: PCA in a nonlinear feature space. (a) The transformed data
in the Z space are approximately on a linear manifold. (b) Shows nonlinear
reconstruction of the data in the nonlinear feature space.

We can obtain the reconstructed data in the original X space by transforming
the red reconstructed points in Figure 9.4(b) back to X space, as shown below.

x1

x
2

Exercise 9.11

Using the feature transform Φ : [ x1
x2 ] !→

[ x1
x2

x1+x2

]

, you have run top-1 PCA

on your data z1, . . . , zn in Z space to obtain V1 =
[
0
0
1

]

and z̄ = 0.

For the test point x = [ 11 ], compute z, ẑ, x̂.

(z is the test point in Z space; ẑ is the reconstructed test point in Z space
using top-1 PCA; x̂ is the reconstructed test point in X space.)

Exercise 9.11 illustrates that you may not always be able to obtain the recon-
structed data in your original X space. For our spiral example, we can obtain
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Nonlinear PCA can be performed in kernel space 



Applications of PCA 

v  Data visualization 
v  Data compression 
v  Dimensionality reduction before applying other forms of 

learning 
v  Can be viewed as performing noise-reduction 
 
Domains where it is commonly used: 
v  Face recognition (eigenfaces) 
v  Text categorization (LSA) 
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 Face Representation using PCA 

… EigenFaces 

Reconstructed face 

Input face 

PCA 

Minimize reconstruction error 

  56.4                 38.6           -19.7            9.8              -45.9           19.6           -  14.2 



Comments about PCA 

v  One of the most widely used techniques for data analysis 
v  The basis for "latent semantic analysis" for representing 

text. 
 
v  There are many other dimensionality reduction techniques: 

v  Canonical correlation analysis (CCA) 
v  Independent component analysis (ICA) 
v  Non-negative matrix factorization (NMF) 
v  Autoencoders 
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PCA in Python 

X = X - np.mean(X, axis=0) 
[u,s,v] = numpy.linalg.svd(X) 
v = v.transpose() 
v = v[:,:numcomp] 
return numpy.dot(X, v) 
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