Principal Components Analysis
(PCA)

Chapter e-9



Motivation

Principal components: new features constructed as linear
combinations of the given features.

Choose combinations of features that achieve high variance.
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Pre-processing

» Center the data
» Standardize if features have different scales



First principal component

Look for a direction v that maximizes the variance of 2z =x'v
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First principal component

Objective: maximize vIYv

such that viv=1

Use the Lagrange multipliers method with
Av)=vTiv+ A1 —vTv)
Taking derivative with respect to v and setting to zero gives:

2V = AV

I.e. v is an eigenvector of the covariance matrix.
Which one should we choose?



Principal components

Solution is an eigenvector of the covariance matrix:
DV = AV

Since the covariance matrix is symmetric, it has real
eigenvalues, and the eigenvectors form a basis.

Therefore, if we want k directions, choose the k eigenvectors
with the largest eigenvalues.



Coordinate systems

Coordinate system: an orthonormal basis.

Our standard Euclidean basis: U1, ..., Uqd
where u; is a unit vector with a single non-zero coefficient

Expressing x in ferms of our basis:

d d
X = inui = Z(XTui)ui
i=1 i=1
Can do that in ferms of the principal components: 2 =
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Principal components

To represent x; in the basis of the principal components:
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z; is a k-dimensional vector; x; is d-dimensional
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Alternative interpretation

PCA can also be derived as the basis that minimizes the
reconstruction error arising from projecting the data onto
a k-dimensional subspace.
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Reconstruction error

If we kept all the PCs:
d

X = E AL

i=1
The reconstructed vector using k PCs:

k
X = Z 21 Vg
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The reconstruction error:
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Computing principal components using SVD

SVD: singular value decomposition
Any n x d matrix X can be expressed as:

X =0rvrT

Where:

U : n x d matrix (orthonormal columns)
Vi d x d matrix (orthonormal columns)
M. d x d matrix (diagonal)

(dxd) (d x d)

(n x d) (n x d)




Computing principal components using SVD

SVD: singular value decomposition
Any n x d matrix X can be expressed as:

X=0Irvrt
Relationship to the scatter/covariance matrix:
> =XTX = (UTVT)T(U:
= (VIUT)TUTVT = V-

V)

2VT

I.e., the matrix V we obtain from SVD is the matrix of
eigenvectors of the covariance matrix.
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PCA for the digits data
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How to choose the number of principal components?



Nonlinear PCA
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(a) Data in X space

Linear PCA won't work here.
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Nonlinear PCA can be performed in kernel space
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Applications of PCA

Data visualization
Data compression

Dimensionality reduction before applying other forms of
learning

Can be viewed as performing noise-reduction

Domains where it is commonly used:
Face recognition (eigenfaces)
Text categorization (LSA)
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Face RepresenTaTion using PCA
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Comments about PCA

One of the most widely used techniques for data analysis

The basis for "latent semantic analysis" for representing
text.

There are many other dimensionality reduction techniques:

Canonical correlation analysis (CCA)
Independent component analysis (ICA)
Non-negative matrix factorization (NMF)
Autoencoders
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PCA in Python

X = X - np.mean(X, axis=0)
[u,s,v] = numpy.linalg.svd(X)
v = v.tfranspose()

v = v[:,:numcomp]

return numpy.dot(X, v)
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