Principal Components Analysis (PCA)

Chapter e-9

Motivation

Principal components: new features constructed as linear combinations of the given features.

Choose combinations of features that achieve high variance.

Motivation

Principal components: new features constructed as linear combinations of the given features.

100% Reconstruction Error 80 60 $\frac{22}{22}$ 40 2000 **•** 1 50100 150200k× not ∶ z_1 (a) Reconstruction error (b) Top-2 PCA-features

Choose combinations of features that achieve high variance.

Pre-processing

- * Center the data
- Standardize if features have different scales

Look for a direction **v** that maximizes the variance of $z = \mathbf{x}_n^{\mathrm{T}} \mathbf{v}$

Look for a direction v that maximizes the variance of $z = \mathbf{x}_n^{\mathrm{T}} \mathbf{v}$

Look for a direction v that maximizes the variance of $z = \mathbf{x}_n^{\mathrm{T}} \mathbf{v}$

$$\mathbf{var}[z] = \frac{1}{N} \sum_{n=1}^{N} z_n^2$$

$$= \frac{1}{N} \sum_{n=1}^{N} \mathbf{v}^{\mathrm{T}} \mathbf{x}_n \mathbf{x}_n^{\mathrm{T}} \mathbf{v}$$

$$= \mathbf{v}^{\mathrm{T}} \left(\frac{1}{N} \sum_{n=1}^{N} \mathbf{x}_n \mathbf{x}_n^{\mathrm{T}} \right) \mathbf{v}$$

$$= \mathbf{v}^{\mathrm{T}} \Sigma \mathbf{v}.$$

covariance matrix

Objective: maximize
$$\mathbf{v}^{\intercal}\Sigma\mathbf{v}$$

such that $\mathbf{v}^{\intercal}\mathbf{v} = 1$

Use the Lagrange multipliers method with

$$\Lambda(\mathbf{v}) = \mathbf{v}^{\mathsf{T}} \Sigma \mathbf{v} + \lambda (1 - \mathbf{v}^{\mathsf{T}} \mathbf{v})$$

Taking derivative with respect to v and setting to zero gives:

$$\Sigma \mathbf{v} = \lambda \mathbf{v}$$

I.e. **v** is an eigenvector of the covariance matrix. Which one should we choose?

Principal components

Solution is an eigenvector of the covariance matrix:

$$\Sigma \mathbf{v} = \lambda \mathbf{v}$$

Since the covariance matrix is symmetric, it has real eigenvalues, and the eigenvectors form a basis.

Therefore, if we want k directions, choose the k eigenvectors with the largest eigenvalues.

Coordinate systems

Coordinate system: an orthonormal basis.

Our standard Euclidean basis: $\mathbf{u}_1, \ldots, \mathbf{u}_d$ where u_i is a unit vector with a single non-zero coefficient

Expressing x in terms of our basis:

$$\mathbf{x} = \sum_{i=1}^d x_i \mathbf{u}_i = \sum_{i=1}^d (\mathbf{x}^\mathsf{T} \mathbf{u}_i) \mathbf{u}_i$$

Can do that in terms of the principal components:

$$egin{array}{rll} z_1 &=& \mathbf{x}^{ ext{T}} \mathbf{v}_1 \ z_2 &=& \mathbf{x}^{ ext{T}} \mathbf{v}_2 \ z_3 &=& \mathbf{x}^{ ext{T}} \mathbf{v}_3 \ && ert \end{array}$$

Principal components

To represent x_i in the basis of the principal components:

$$\mathbf{z}_i = egin{pmatrix} \mathbf{x}_i^\mathsf{T} \mathbf{v}_1 \ dots \ \mathbf{x}_i^\mathsf{T} \mathbf{v}_k \end{pmatrix}$$

 \mathbf{z}_i is a k-dimensional vector; \mathbf{x}_i is d-dimensional

Alternative interpretation

PCA can also be derived as the basis that minimizes the reconstruction error arising from projecting the data onto a k-dimensional subspace.

Reconstruction error

If we kept all the PCs:

$$\mathbf{x} = \sum_{i=1}^{d} z_i \mathbf{v}_i$$

The reconstructed vector using k PCs:

$$\hat{\mathbf{x}} = \sum_{i=1}^{k} z_i \mathbf{v}_i$$

The reconstruction error:

$$||\mathbf{x} - \hat{\mathbf{x}}||^2 = ||\sum_{i=k+1}^d z_i \mathbf{v}_i||^2 = \sum_{i=k+1}^d z_i^2$$

Computing principal components using SVD

SVD: singular value decomposition Any n x d matrix X can be expressed as:

$$X = U \Gamma V^{\mathsf{T}}$$

Where:

U: n x d matrix (orthonormal columns)

V : d x d matrix (orthonormal columns)

 Γ : d x d matrix (diagonal)

$$\begin{array}{c} X \\ (n \times d) \end{array} = \begin{bmatrix} U \\ (n \times d) \end{bmatrix} \begin{bmatrix} \Gamma \\ (d \times d) \end{bmatrix} \begin{bmatrix} V^{T} \\ (d \times d) \end{bmatrix}$$

Computing principal components using SVD

SVD: singular value decomposition Any n x d matrix X can be expressed as:

$$X = U \Gamma V^{\mathsf{T}}$$

Relationship to the scatter/covariance matrix:

$$\Sigma = X^{\mathsf{T}}X = (U\Gamma V^{\mathsf{T}})^{\mathsf{T}}(U\Gamma V^{\mathsf{T}})$$
$$= (V\Gamma U^{\mathsf{T}})^{\mathsf{T}}U\Gamma V^{\mathsf{T}} = V\Gamma^{2}V^{\mathsf{T}}$$

I.e., the matrix V we obtain from SVD is the matrix of eigenvectors of the covariance matrix.

PCA for the digits data

How to choose the number of principal components?

Nonlinear PCA

Linear PCA won't work here.

Nonlinear PCA

Nonlinear PCA can be performed in kernel space

Applications of PCA

- Data visualization
- Data compression
- Dimensionality reduction before applying other forms of learning
- * Can be viewed as performing noise-reduction

Domains where it is commonly used:

- Face recognition (eigenfaces)
- Text categorization (LSA)

Face Representation using PCA

Input face

EigenFaces

Reconstructed face

Minimize reconstruction error

Comments about PCA

- * One of the most widely used techniques for data analysis
- The basis for "latent semantic analysis" for representing text.
- * There are many other dimensionality reduction techniques:
 - Canonical correlation analysis (CCA)
 - Independent component analysis (ICA)
 - Non-negative matrix factorization (NMF)
 - Autoencoders

PCA in Python

X = X - np.mean(X, axis=0)
[u,s,v] = numpy.linalg.svd(X)
v = v.transpose()
v = v[:,:numcomp]
return numpy.dot(X, v)