Principal Components Analysis (PCA)

Chapter e-9

Motivation

Principal components: new features constructed as linear combinations of the given features.

Choose combinations of features that achieve high variance.

Motivation

Principal components: new features constructed as linear combinations of the given features.

Choose combinations of features that achieve high variance.

(a) Reconstruction error

(b) Top-2 PCA-features

Pre-processing

* Center the data
* Standardize if features have different scales

First principal component

Look for a direction \mathbf{v} that maximizes the variance of $z=\mathbf{x}_{n}^{\mathrm{T}} \mathbf{v}$

First principal component

Look for a direction v that maximizes the variance of $z=\mathbf{x}_{n}^{\mathrm{T}} \mathbf{v}$

$$
\begin{aligned}
\operatorname{var}[z] & =\frac{1}{N} \sum_{n=1}^{N} z_{n}^{2} \\
& =\frac{1}{N} \sum_{n=1}^{N} \mathbf{v}^{\mathrm{T}} \mathbf{x}_{n} \mathbf{x}_{n}^{\mathrm{T}} \mathbf{v} \\
& =\mathbf{v}^{\mathrm{T}}\left(\frac{1}{N} \sum_{n=1}^{N} \mathbf{x}_{n} \mathbf{x}_{n}^{\mathrm{T}}\right) \mathbf{v} \\
& =\mathbf{v}^{\mathrm{T}} \Sigma \mathbf{v}
\end{aligned}
$$

First principal component

Look for a direction v that maximizes the variance of $z=\mathbf{x}_{n}^{\mathrm{T}} \mathbf{v}$

$$
\begin{aligned}
\operatorname{var}[z] & =\frac{1}{N} \sum_{n=1}^{N} z_{n}^{2} \\
& =\frac{1}{N} \sum_{n=1}^{N} \mathbf{v}^{\mathrm{T}} \mathbf{x}_{n} \mathbf{x}_{n}^{\mathrm{T}} \mathbf{v} \\
& =\mathbf{v}^{\mathrm{T}}\left(\frac{1}{N} \sum_{n=1}^{N} \mathbf{x}_{n} \mathbf{x}_{n}^{\mathrm{T}}\right) \mathbf{v} \\
& =\mathbf{v}^{\mathrm{T}} \Sigma \mathbf{V}
\end{aligned}
$$

covariance matrix

First principal component

Objective: maximize $\quad \mathbf{v}^{\top} \Sigma \mathbf{V}$
such that $\mathbf{v}^{\top} \mathbf{v}=1$

Use the Lagrange multipliers method with

$$
\Lambda(\mathbf{v})=\mathbf{v}^{\top} \Sigma \mathbf{v}+\lambda\left(1-\mathbf{v}^{\top} \mathbf{v}\right)
$$

Taking derivative with respect to v and setting to zero gives:

$$
\Sigma \mathbf{v}=\lambda \mathbf{v}
$$

I.e. v is an eigenvector of the covariance matrix.

Which one should we choose?

Principal components

Solution is an eigenvector of the covariance matrix:

$$
\Sigma \mathbf{v}=\lambda \mathbf{v}
$$

Since the covariance matrix is symmetric, it has real eigenvalues, and the eigenvectors form a basis.

Therefore, if we want k directions, choose the k eigenvectors with the largest eigenvalues.

Coordinate systems

Coordinate system: an orthonormal basis.

Our standard Euclidean basis: $\mathbf{u}_{1}, \ldots, \mathbf{u}_{d}$
where u_{i} is a unit vector with a single non-zero coefficient

Expressing \times in terms of our basis:

$$
\mathbf{x}=\sum_{i=1}^{d} x_{i} \mathbf{u}_{i}=\sum_{i=1}^{d}\left(\mathbf{x}^{\top} \mathbf{u}_{i}\right) \mathbf{u}_{i}
$$

Can do that in terms of the principal components:

$$
\begin{aligned}
& z_{1}=\mathbf{x}^{\mathrm{T}} \mathbf{v}_{1} \\
& z_{2}=\mathbf{x}^{\mathrm{T}} \mathbf{v}_{2} \\
& z_{3}=\mathbf{x}^{\mathrm{T}} \mathbf{v}_{3}
\end{aligned}
$$

Principal components

To represent x_{i} in the basis of the principal components:

$$
\mathbf{z}_{i}=\left(\begin{array}{c}
\mathbf{x}_{i}^{\top} \mathbf{v}_{1} \\
\vdots \\
\mathbf{x}_{i}^{\top} \mathbf{v}_{k}
\end{array}\right)
$$

z_{i} is a k-dimensional vector; x_{i} is d-dimensional

Alternative interpretation

PCA can also be derived as the basis that minimizes the reconstruction error arising from projecting the data onto a k-dimensional subspace.

Reconstruction error

If we kept all the PCs:

$$
\mathbf{x}=\sum_{i=1}^{d} z_{i} \mathbf{v}_{i}
$$

The reconstructed vector using k PCs:

$$
\hat{\mathbf{x}}=\sum_{i=1}^{k} z_{i} \mathbf{v}_{i}
$$

The reconstruction error:

$$
\|\mathbf{x}-\hat{\mathbf{x}}\|^{2}=\left\|\sum_{i=k+1}^{d} z_{i} \mathbf{v}_{i}\right\|^{2}=\sum_{i=k+1}^{d} z_{i}^{2}
$$

Computing principal components using SVD

SVD: singular value decomposition
Any $n \times d$ matrix X can be expressed as:

$$
X=U \Gamma V^{\top}
$$

Where:
$\mathrm{U}: \mathrm{n} \times \mathrm{d}$ matrix (orthonormal columns)
V : $\mathrm{d} \times \mathrm{d}$ matrix (orthonormal columns)
$r: d x d$ matrix (diagonal)

Computing principal components using SVD

SVD: singular value decomposition
Any $n \times d$ matrix X can be expressed as:

$$
X=U \Gamma V^{\top}
$$

Relationship to the scatter/covariance matrix:

$$
\begin{aligned}
\Sigma & =X^{\top} X=\left(U \Gamma V^{\top}\right)^{\top}\left(U \Gamma V^{\top}\right) \\
& =\left(V \Gamma U^{\top}\right)^{\top} U \Gamma V^{\top}=V \Gamma^{2} V^{\top}
\end{aligned}
$$

I.e., the matrix V we obtain from SVD is the matrix of eigenvectors of the covariance matrix.

PCA for the digits data

(a) Reconstruction error

(b) Top-2 PCA-features

How to choose the number of principal components?

Nonlinear PCA

(a) Data in \mathcal{X} space

(b) Top-1 PCA reconstruction

Linear PCA won't work here.

Nonlinear PCA

Nonlinear PCA can be performed in kernel space

Applications of PCA

- Data visualization
- Data compression
- Dimensionality reduction before applying other forms of learning
* Can be viewed as performing noise-reduction

Domains where it is commonly used:

* Face recognition (eigenfaces)
- Text categorization (LSA)

Face Representation using PCA

Comments about PCA

* One of the most widely used techniques for data analysis
* The basis for "latent semantic analysis" for representing text.
* There are many other dimensionality reduction techniques:
- Canonical correlation analysis (CCA)
- Independent component analysis (ICA)
- Non-negative matrix factorization (NMF)
- Autoencoders

PCA in Python

```
X = X - np.mean(X,axis=0)
[u,s,v] = numpy.linalg.svd(X)
v = v.transpose()
v = v[:,numcomp]
return numpy.dot(X,v)
```

