
Nearest neighbor classifiers 

Chapter e-6 
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e-6. Similarity-Based Methods 6.2. Nearest Neighbor

for the nth such reordered data point with respect to x. We will drop the
dependence on x and simply write (x[n], y[n]) when the context is clear. So,

d(x,x[1]) ≤ d(x,x[2]) ≤ · · · ≤ d(x,x[N ])

The final hypothesis is

g(x) = y[1](x)

(x is classified by just looking at the label of the nearest data point to x). This
simple nearest neighbor rule admits a nice geometric interpretation, shown for
two dimensions in Figure 6.1.

Figure 6.1: Nearest neighbor Voronoi tessellation.

The shading illustrates the final hypothesis g(x). Each data point xn ‘owns’ a
region defined by the points closer to xn than to any other data point. These
regions are convex polytopes (convex regions whose faces are hyperplanes),
some of which are unbounded; in two dimensions, we get convex polygons.
The resulting set of regions defined by such a set of points is called a Voronoi
(or Dirichlet) tessellation of the space. The final hypothesis g is a Voronoi
tessellation with each region inheriting the class of the data point that owns
the region. Figure 6.2(a) further illustrates the nearest neighbor classifier for
a sample of 500 data points from the digits data described in Chapter 3.

The clear advantage of the nearest neighbor rule is that it is simple and
intuitive, easy to implement and there is no training. It is expressive, as it
achieves zero in-sample error (as can immediately be deduced from Figure 6.1),
and as we will soon see, it is reliable. A practically important cosmetic upside,
when presenting to a client for example, is that the classification of a test object
is easy to ‘explain’: just present the similar object on which the classification
is based. The main disadvantage is the computational overhead.
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Nearest Neighbor Classification 

NN(image): 
  
1.  Find the image in the training data which is closest 

to the query image. 
2.  Return its label. 
 

query closest image 



Distance based methods 

q  Supervised learning methods (nearest neighbor methods) 
q  Clustering (k-means and hierarchical clustering) 
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Measuring distance 

How to measure closeness? 
 
Distance measures for continuous data: 
 
The Euclidean distance: 
 
 
 
(based on the 2-norm) 
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More distance measures 

The Manhattan distance: 
 
 
 
This is the distance if we can only travel along coordinate axes. 
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The Minkowski distance 

The Minkowki distance of order p: 
 
 
 
 
This is based on the p-norm (sometimes called the Lp norm). 
 
The Euclidean and Manhattan distances are special cases 
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The Minkowski distance 

The Minkowki distance of order p: 
 
 
 
 
This is based on the p-norm (sometimes called the Lp norm). 
 
What happens when p goes to infinity? 
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The Minkowski distance 

The Minkowki distance of order p: 
 
 
 
 
 
What happens when p goes to infinity? 
 
 
 
We get the Chebyshev distance  
 
 
 

8 

dp(x,x
0) = ||x� x

0||p =

 
dX

i=1

|xi � x

0
i|p
!1/p

d1(x,x

0
) = max

i
|xi � x

0
i|

image from https://en.wikipedia.org/wiki/Chebyshev_distance 



The Minkowski distance 

The unit sphere for various values of p 
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8. Distance-based models

p.235 Figure 8.3: Circles and ellipses

(left) Lines connecting points at order-p Minkowski distance 1 from the origin for (from
inside) p = 0.8; p = 1 (Manhattan distance, the rotated square in red); p = 1.5; p = 2

(Euclidean distance, the violet circle); p = 4; p = 8; and p =1 (Chebyshev distance, the
blue rectangle). Notice that for points on the coordinate axes all distances agree. For the
other points, our reach increases with p; however, if we require a rotation-invariant
distance metric then Euclidean distance is our only choice. (right) The rotated ellipse
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Properties of a distance 
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A function d(x,x’) is called a distance function if it satisfies the 
following conditions: 
i.  d(x, x) = 0   (a distance of a point to itself is zero) 
ii.  d(x, x’) ≠ 0 if x ≠ x’  (all other distances are non-zero) 
iii.  d(x, x’) = d(x’, x)  (distances are symmetric) 
iv.  d(x, x’) <= d(x, x’’) + d(x’’, x’)  (detours make distances 

larger) 
 
The last condition is called the triangle inequality 
 
The Minkowski distance with p<1 does not satisfy the triangle 
inequality. 



Data normalization 

Is very important in this context! 
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The Mahalanobis distance 

Sometimes it’s useful to use different scales for different 
coordinates. 
Therefore:  use an ellipse rather than a circle to identify points 
that are a fixed distance away. 
 
Also consider rotating the ellipse. 
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The Mahalanobis distance 

The shape of the ellipse can be estimated from data as the 
inverse of the covariance matrix: 
 
 
(The inverse of the covariance matrix has the effect of 
decorrelating and normalizing features) 
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Nearest neighbor classification 

NN(image): 
  
1.  Find the image in the training data which is closest 

to the query image. 
2.  Return its label. 
 

query closest image 



Nearest neighbor classification 

The nearest neighbor classifier: 
Classify a given test example to the class of the nearest 
training example. 
 
More formally: 
 
 
Reorder the data according to its similarity to an input x: 
 
 
i.e.  
 
The prediction:   
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accomplished by first using input preprocessing to standardize the data (see
Chapter 9) and then using the standard Euclidean distance. Another useful
measure, especially for Boolean vectors, is the cosine similarity,

CosSim(x,x′) =
x • x′

∥x∥∥x′∥ .

The cosine similarity is the cosine of the angle between the two vectors,
CosSim ∈ [−1, 1], and larger values indicate greater similarity. When the
objects represent sets, then the set similarity or Jaccard coefficient is often
used. For example, consider two movies which have been watched by two dif-
ferent sets of users S1, S2. We may measure how similar these movies are by
how similar the two sets S1 and S2 are:

J(S1, S2) =
|S1 ∩ S2|
|S1 ∪ S2|

;

1−J(S1, S2) can be used as a measure of distance which conveniently has the
properties that a metric formally satisfies, such as the triangle inequality. We
focus on the Euclidean distance which is also a metric; many of the algorithms,
however, apply to arbitrary similarity measures.

Exercise 6.1

(a) Give two vectors with very high cosine similarity but very low Euclidean
distance similarity. Similarly, give two vectors with very low cosine
similarity but very high Euclidean distance similarity.

(b) If the origin of the coordinate system changes, which measure of
similarity changes? How will this affect your choice of features?

6.2 Nearest Neighbor

Simple rules survive; and, the nearest neighbor technique is perhaps the sim-
plest of all. We will summarize the entire algorithm in a short paragraph.
But, before we forge ahead, let’s not forget the two basic competing principles
laid out in the first five chapters: any learning technique should be expressive
enough that we can fit the data and obtain low Ein; however, it should be
reliable enough that a low Ein implies a low Eout.

The nearest neighbor rule is embarrassingly simple. There is no training
phase (or no ‘learning’ so to speak). The entire algorithm is specified by how
one computes the final hypothesis g(x) on a test input x. Recall that the data
set is D = (x1, y1) . . . (xN , yN ), where yn = ±1. To classify the test point x,
find the nearest point to x in the data set (the nearest neighbor), and use the
classification of this nearest neighbor.

Formally speaking, reorder the data according to distance from x (breaking
ties using the data point’s index for simplicity). We write (x[n](x), y[n](x))
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for the nth such reordered data point with respect to x. We will drop the
dependence on x and simply write (x[n], y[n]) when the context is clear. So,

d(x,x[1]) ≤ d(x,x[2]) ≤ · · · ≤ d(x,x[N ])

The final hypothesis is

g(x) = y[1](x)

(x is classified by just looking at the label of the nearest data point to x). This
simple nearest neighbor rule admits a nice geometric interpretation, shown for
two dimensions in Figure 6.1.

Figure 6.1: Nearest neighbor Voronoi tessellation.

The shading illustrates the final hypothesis g(x). Each data point xn ‘owns’ a
region defined by the points closer to xn than to any other data point. These
regions are convex polytopes (convex regions whose faces are hyperplanes),
some of which are unbounded; in two dimensions, we get convex polygons.
The resulting set of regions defined by such a set of points is called a Voronoi
(or Dirichlet) tessellation of the space. The final hypothesis g is a Voronoi
tessellation with each region inheriting the class of the data point that owns
the region. Figure 6.2(a) further illustrates the nearest neighbor classifier for
a sample of 500 data points from the digits data described in Chapter 3.

The clear advantage of the nearest neighbor rule is that it is simple and
intuitive, easy to implement and there is no training. It is expressive, as it
achieves zero in-sample error (as can immediately be deduced from Figure 6.1),
and as we will soon see, it is reliable. A practically important cosmetic upside,
when presenting to a client for example, is that the classification of a test object
is easy to ‘explain’: just present the similar object on which the classification
is based. The main disadvantage is the computational overhead.
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The shading illustrates the final hypothesis g(x). Each data point xn ‘owns’ a
region defined by the points closer to xn than to any other data point. These
regions are convex polytopes (convex regions whose faces are hyperplanes),
some of which are unbounded; in two dimensions, we get convex polygons.
The resulting set of regions defined by such a set of points is called a Voronoi
(or Dirichlet) tessellation of the space. The final hypothesis g is a Voronoi
tessellation with each region inheriting the class of the data point that owns
the region. Figure 6.2(a) further illustrates the nearest neighbor classifier for
a sample of 500 data points from the digits data described in Chapter 3.

The clear advantage of the nearest neighbor rule is that it is simple and
intuitive, easy to implement and there is no training. It is expressive, as it
achieves zero in-sample error (as can immediately be deduced from Figure 6.1),
and as we will soon see, it is reliable. A practically important cosmetic upside,
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Voronoi diagrams 

Voronoi diagram with respect to a collection of points x1,…,xN: 
 
 
 
 
 
 
 
 
 
 
The Voronoi cell associated with point xi is the set of points 
that are closer to xi than every other point in the collection 
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Voronoi diagrams 

The Voronoi diagram depends on the distance measure that is 
used: 
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Voronoi diagram computed from 
Euclidean distance (L2 norm) 

Voronoi diagram computed from 
Manhattan distance (L1 norm) 

Image from http://en.wikipedia.org/wiki/Voronoi_diagram 



Nearest neighbor classification 

The nearest neighbor classifier: 
Classify a given test example to the class of the nearest 
training example. 
 
Decision boundary is the result of fusing adjacent Voronoi cells 
that are associated with the same class. 

18 

e
-C

H
A
P
T
E
R

e-6. Similarity-Based Methods 6.2. Nearest Neighbor

for the nth such reordered data point with respect to x. We will drop the
dependence on x and simply write (x[n], y[n]) when the context is clear. So,

d(x,x[1]) ≤ d(x,x[2]) ≤ · · · ≤ d(x,x[N ])

The final hypothesis is

g(x) = y[1](x)

(x is classified by just looking at the label of the nearest data point to x). This
simple nearest neighbor rule admits a nice geometric interpretation, shown for
two dimensions in Figure 6.1.

Figure 6.1: Nearest neighbor Voronoi tessellation.

The shading illustrates the final hypothesis g(x). Each data point xn ‘owns’ a
region defined by the points closer to xn than to any other data point. These
regions are convex polytopes (convex regions whose faces are hyperplanes),
some of which are unbounded; in two dimensions, we get convex polygons.
The resulting set of regions defined by such a set of points is called a Voronoi
(or Dirichlet) tessellation of the space. The final hypothesis g is a Voronoi
tessellation with each region inheriting the class of the data point that owns
the region. Figure 6.2(a) further illustrates the nearest neighbor classifier for
a sample of 500 data points from the digits data described in Chapter 3.

The clear advantage of the nearest neighbor rule is that it is simple and
intuitive, easy to implement and there is no training. It is expressive, as it
achieves zero in-sample error (as can immediately be deduced from Figure 6.1),
and as we will soon see, it is reliable. A practically important cosmetic upside,
when presenting to a client for example, is that the classification of a test object
is easy to ‘explain’: just present the similar object on which the classification
is based. The main disadvantage is the computational overhead.

c⃝ AM
L Abu-Mostafa, Magdon-Ismail, Lin: Jan-2015 e-Chap:6–4



Nearest neighbor classification 

The nearest neighbor classifier: 
Classify a given test example to the class of the nearest 
training example. 
 
What is the accuracy of the nearest neighbor classifier when it 
is tested on the training set?  (i.e., what is Ein) 
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Nearest neighbor classification 

The nearest neighbor classifier: 
Classify a given test example to the class of the nearest 
training example. 
 
Property of the nearest neighbor classifier: 
Eout ≤ 2E*out where E*out is the error of an optimal classifier 
 
More precisely: 
Theorem:  For any δ > 0 there is a sufficiently large N such that 
with probability > 1 – δ the resulting nearest neighbor classifier 
has Eout ≤ 2E*out. 
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k-NN 

Use the closest k neighbors to make a decision instead of a 
single nearest neighbor 
Choose the majority label among the k nearest neighbors 
 
Why do you expect this to work better? 



k-NN 

Use the closest k neighbors to make a decision instead of a 
single nearest neighbor 
Choose the majority label among the k nearest neighbors 
 
Can produce confidence scores.  How? 



k-NN 

Use the closest k neighbors to make a decision instead of a 
single nearest neighbor 
Choose the majority label among the k nearest neighbors 
 
Other refinements:  an example’s vote is inversely proportional 
to its distance 



NN vs k-NN 

Decision boundary of NN vs k-NN on the digits data: 
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(a) 1-NN rule (b) 21-NN rule

Figure 6.2: The 1-NN and 21-NN rules for classifying a random sample of
500 digits (1 (blue circle) vs all other digits). Note, 21 ≈

√
500. For the

1-NN rule, the in-sample error is zero, resulting in a complicated decision
boundary with islands of red and blue regions. For the 21-NN rule, the
in-sample error is not zero and the decision boundary is ‘simpler’.

Exercise 6.3

Fix an odd k ≥ 1. For N = 1, 2, . . . and data sets {DN} of size N , let gN
be the k-NN rule derived from DN , with out-of-sample error Eout(gN).

(a) Argue that Eout(gN ) = Ex[Qk(η(x))] + Ex[ϵN (x)] for some error
term ϵN (x) which converges to zero, and where

Qk(η) =
(k−1)/2
∑

i=0

(
k
i

)(

ηi+1(1− η)k−i + (1− η)i+1ηk−i
)

,

and η(x) = min{π(x), 1− π(x)}.

(b) Plot Qk(η) for η ∈ [0, 1
2 ] and k = 1, 3, 5.

(c) Show that for large enough N , with probability at least 1− δ,

k = 3 : Eout(gN) ≤ E∗
out + 3 E [η2(x); ]

k = 5 : Eout(gN) ≤ E∗
out + 10 E [η3(x)].

(d) [Hard] Show that Eout(gN ) is asymptotically E∗
out(1 + O(k−1/2)).

[Hint: Use your plot of Qk to argue that there is some a(k) such that
Qk ≤ η(1 + a(k)), and show that the best such a(k) is O(1/

√
k).]

For k = 3, as N grows, one finds that the out-of-sample error is nearly optimal:

Eout(gN ) ≤ E∗
out + 3 E [η2(x)].
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How to choose k? 

The value of k can be chosen using cross-validation, like any 
classifier parameter: 
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(a) In-sample error of k-NN rule (b) Out-of-sample error of k-NN rule

Figure 6.3: In and out-of-sample errors for various choices of k for the 1
vs all other digits classification task. (a) shows the in-sample error; (b)
the out-of-sample error. N points are randomly selected for training, and
the remaining for computing the test error. The performance is averaged
over 10,000 such training-testing splits. Observe that the 3-NN is almost
as good as anything; the in and out-of sample errors for k = N1/2 are a
close match, as expected from Theorem 6.2. The cross validation in-sample
error is approaching the out-of-sample error. For k = 1 the in-sample error
is zero, and is not shown.

our main conclusions on the digits data using k = ⌊
√
N⌋, k chosen using

10-fold cross validation and k fixed at 1, 3.

6.2.3 Improving the Efficiency of Nearest Neighbor

The simplicity of the nearest neighbor rule is both a virtue and a vice. There’s
no training cost, but we pay for this when predicting on a test input during
deployment. For a test point x, we need to compute the k nearest neighbors.
This means we need access to all the data, a memory requirement of Nd
and a computational complexity of O(Nd +N log k) (using appropriate data
structures to compute N distances and pick the smallest k). This can be
excessive as the next exercise illustrates.

Exercise 6.6

We want to select the value of k = 1, 3, 5, . . . , 2
⌊

N+1
2

⌋

− 1 using 10-fold
cross validation. Show that the running time is O(N3d+N3 logN)

The basic approach to addressing these issues is to preprocess the data in some
way. This can help by either storing the data in a specialized data structure so
that the nearest neighbor queries are more efficient, or by reducing the amount
of data that needs to be kept (which helps with the memory and computational
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Interim conclusions 

Properties of nearest neighbor classifiers: 
v  Simple and easy to implement 
v  No training required 
v  Expressive:  can achieve zero training error 
v  Easy to explain the result 

But… 
v  Running time can be an issue 
v  Not the best in terms of generalization 
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Nearest neighbor classification 

The nearest neighbor classifier: 
Classify a given test example to the class of the nearest 
training example. 
 
Running time for testing an example when dataset has N 
examples? 
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Nearest neighbor classification 

The nearest neighbor classifier: 
Classify a given test example to the class of the nearest 
training example. 
 
Running time for testing an example when dataset has N 
examples?    
 
O(N).  Expensive when dealing with large datasets. 
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Nearest neighbor classification 

Running time for testing an example when dataset has N 
examples is O(N). 
 
 
Solutions: 
 
“Condense” the dataset 
 
Efficient nearest neighbor search 
(KD-trees, ball-tress, vantage-point trees) 
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(a) Condensed data for 1-NN (b) Condensed data for 21-NN

Figure 6.4: The condensed data and resulting classifiers from running the
CNN heuristic to condense the 500 digits data points used in Figure 6.2.
(a) Condensation to 27 data points for 1-NN training set consistent (b)
Condensation to 40 data points for 21-NN training set consistent.

The CNN algorithm must terminate after at most N steps, and when it
terminates, the resulting set S must be training set consistent. The CNN al-
gorithm delivers good condensation in practice as illustrated by the condensed
data in Figure 6.4 as compared with the full data in Figure 6.2.

Exercise 6.7

Show the following properties of the CNN heuristic. Let S be the current
set of points selected by the heuristic.

(a) If S is not training set consistent, and if x∗ is a point which is not
training set consistent, show that the CNN heuristic will always find
a point to add to S.

(b) Show that the point added will ‘help’ with the classification of x∗
by S; it suffices to show that the new k nearest neighbors to x∗ in S
will contain the point added.

(c) Show that after at most N − k iterations the CNN heuristic must
terminate with a training set consistent S.

The CNN algorithm will generally not produce a training consistent set of
minimum cardinality. Further, the condensed set can vary depending on the
order in which data points are considered, and the process is quite computa-
tionally expensive; but, at least it is done only once, and it saves every time a
new point is to be classified.

We should distinguish data condensing from data editing. The former has a
purely computational motive, to reduce the size of the data set while keeping
the decision boundary nearly unchanged. The latter edits the data set to
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KD-tree 

Algorithm: 
²  Cycle through the coordinates 
²  Insert a node that corresponds to the median of the given 

coordinate, and put all other points in the left/right subtree on 
the basis of that coordinate 

 
A KD-tree for the set of points 
(2,3), (5,4), (9,6), (4,7), (8,1), (7,2). 
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KD-tree 

Algorithm: 
²  Cycle through the coordinates 
²  Insert a node that corresponds to the median of the given 

coordinate, and put all other points in the left/right subtree on 
the basis of that coordinate 

 
A KD-tree for the set of points 
(2,3), (5,4), (9,6), (4,7), (8,1), (7,2). 
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Can be used for implementing nearest  
neighbor search in O(log N) 
 
Not effective for high dimensional data 
(use ball-tree or vantage-point tree) 
 
 



Nearest neighbor classification in high 
dimensions 

Distance functions lose their usefulness in high dimensions. 
 
Consider the Euclidean distance for example: 
 
 
 
We expect that if d is large, many of the features won’t be 
relevant, and so the signal contained in the informative 
dimensions can easily be corrupted by the noise. 
This can lead to low accuracy of a nearest neighbor classifier. 
 
Solution:  feature selection, dimensionality reduction 
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The curse of dimensionality 

An umbrella term for the issues that can arise in high  
dimensional data. 
 



The curse of dimensionality 

Some of our intuition from low dimensional spaces breaks in high 
dimensions. 
Example:  In high dimensions, most of the volume of the unit 
sphere is very close to its surface. 
 
Let’s compute the fraction of the volume that is between r=1-ε 
and r=1. 
 
 
The required fraction is: 
 
 
Related fact: 
The ratio of the volume of the unit sphere and unit cube tends 
to 0 as d goes to infinity. 
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Non-parametric vs parametric methods 

Non-parametric methods don’t have any parameters that are 
learned from the data. 
 
Parametric methods have a specific form that the learned model 
will have. 
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parametric method. In d dimensions, there are d+ 1 parameters (the weights
and bias) which need to be learned from the data. These parameters sum-
marize the data, and after learning, the data can be discarded: prediction
only needs the learned parameters. The linear model is quite rigid, in that no
matter what the data, you will always get a linear separator as g. Figure 6.5
illustrates this difference in flexibility on a toy example.

(a) Nonparametric NN (b) Parametric linear

Figure 6.5: The decision boundary of the ‘flexible’ nonparametric nearest
neighbor rule molds itself to the data, whereas the ‘rigid’ parametric linear
model will always give a linear separator.

The k-nearest neighbor method would also be considered nonparametric
(once the ‘parameter’ k has been specified). Theorem 6.2 is an example of
a general convergence result.10 Under mild regularity conditions, no matter
what the target f is, we can recover it as N → ∞, provided that k is chosen
appropriately. That’s quite a powerful statement about such a simple learning
model applied to learning a general f . Such convergence results under mild
assumptions on f are a trademark of nonparametric methods. This has led
to the folklore that nonparametric methods are, in some sense, more powerful
than their cousins the parametric methods: for the parametric linear model,
only if the target f happens to be in the linearly parameterized hypothesis
set, can one get such convergence to f with larger N .

To complicate the distinction between the two methods, let’s look at the
non-linear feature transform (e.g. the polynomial transform). As the poly-
nomial order increases, the number of parameters to be estimated increases
and H, the hypothesis set, gets more and more expressive. It is possible to
choose the polynomial order to increase with N , but not too quickly so that H
gets more and more expressive, eventually capturing any fixed target and yet

10For the technically oriented, it establishes the universal consistency of the k-NN rule.
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Multi-class problems 

The nearest neighbor algorithm works much the same way for 
multi-class problems 
 
 
 
 
 
 
 
 
 
 
In fact, nearest neighbor methods are easily adaptable to any 
ML problem. 
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(a) Multiclass digits data (b) 21-NN decision regions

Figure 6.6: 21-NN decision classifier for the multiclass digits data.

Exercise 6.9

With C classes labeled 1, . . . , C, define πc(x) = P[c|x] (the probability to
observe class c given x, analogous to π(x)). Let η(x) = 1−maxc πc(x).

(a) Define a target f(x) = argmaxc πc(x). Show that, on a test point x,
f attains the minimum possible error probability of

e(f(x)) = P[f(x) ̸= y] = η(x).

(b) Show that for the nearest neighbor rule (k = 1), with high probability,
the final hypothesis gN achieves an error on the test point x that is

e(gN(x))
N→∞−→

C
∑

c=1

πc(x)(1− πc(x)).

(c) Hence, show that for large enough N , with high probability,

Eout(gN) ≤ 2E∗
out −

C
C − 1

(E∗
out)

2.

[Hint: Show that
∑

i a
2
i ≥ a2

1 + (1−a1)
2

C−1 for any a1 ≥ · · · ≥ aC ≥ 0
and

∑

i ai = 1, ]

The previous exercise shows that even for the multiclass problem, the simple
nearest neighbor is at most a factor of 2 from optimal. One can also obtain
a universal consistency result as in Theorem 6.2. The result of running a
21-nearest neighbor rule on the digits data is illustrated in Figure 6.6.

The Confusion Matrix. The probability of misclassification which we dis-
cussed in the 2-class problem can be generalized to a confusion matrix which
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Nearest neighbor regression 

How do turn k-NN into a regression method? 
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data is shown in Table 6.1. The sum of the diagonal elements gives the prob-
ability of correct classification, which is about 42%. From Table 6.1, we can
easily identify some of the digits which are commonly confused, for example 8
is often classified as 0. In comparison, for the two class problem of classifying
digit 1 versus all others, the success was upwards of 98%. For the multiclass
problem, random performance would achieve a success rate of 10%, so the per-
formance is significantly above random; however, it is significantly below the
2-class version; multiclass problems are typically much harder than the two
class problem. Though symmetry and intensity are two features that have
enough information to distinguish between 1 versus the other digits, they are
not powerful enough to solve the multiclass problem. Better features would
certainly help. One can also gain by breaking up the problem into a sequence
of 2-class tasks and tailoring the features to each 2-class problem using domain
knowledge.

6.2.6 Nearest Neighbor for Regression.

With multiclass data, the natural way to combine the classes of the nearest
neighbors to obtain the class of a test input is by using some form of majority
voting procedure. When the output is a real number (y ∈ R), the natural way
to combine the outputs of the nearest neighbors is using some form of averag-
ing. The simplest way to extend the k-nearest neighbor algorithm to regression
is to take the average of the target values from the k-nearest neighbors:

g(x) =
1

k

k∑

i=1

y[i](x).

There are no explicit parameters being learned, and so this is a nonparametric
regression technique. Figure 6.7 illustrates the k-NN technique for regression
using a toy data set generated by the target function in light gray.

k = 1 k = 3 k = 11

Figure 6.7: k-NN for regression on a noisy toy data set with N = 20.
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Distances and kernels 

The Euclidean distance can be expressed in terms of dot 
products: 
 
 
Replacing dot products with kernels: 
 
 
 
As an alternative, consider kernels as measures of similarity, 
and rather than looking for the closest points, look for the most 
similar points, and use kernels directly. 
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Distances and kernels 

Replacing dot products with kernels: 
 
 
 
If we consider a kernel that satisfies K(x,x) = 1, then nearest 
neighbor classification with kernels or distances is equivalent. 
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Summary 

Nearest neighbor classification: 
 
Pros: 
v  Simple and easy to implement 
v  No training involved 
v  One method that does it all 

Cons: 
v  Accuracy suffers in high dimensions 
v  Testing speed is an issue for large datasets 
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