Epilogue: what have you learned this semester?

What did you get out of this course?

What skills have you learned in this course that you feel would be useful?

What are the most important insights you gained this semester?

What advice would you give future students?

What was your biggest challenge in this course?

What would you like me to do differently?

What I hope you got out of this course

The machine learning toolbox

- Formulating a problem as an ML problem
- Understanding a variety of ML algorithms
- Running and interpreting ML experiments
- Understanding what makes ML work theory and practice

Learning scenarios we covered

Classification: discrete/categorical labels

Regression: continuous labels

Clustering: no labels

A variety of learning tasks

- Supervised learning
- Unsupervised learning
- Semi-supervised learning
 - Access to a lot of unlabeled data
- Multi-label classification
 - Each example can belong to multiple classes
- Multi-task classification
 - Solving multiple related tasks

A variety of learning tasks

- Outlier/novelty detection
 - Novelty: anything that is not part of the normal behavior of a system.
- Reinforcement learning
 - Learn action to maximize payoff

Structured output learning

Learning in structured output spaces

Handle prediction problems with complex output spaces

Structured outputs: multivariate, correlated, constrained

General way to solve many learning problems

Examples taken from Ben Taskar's 07 NIPS tutorial

Local vs. Global

Global classification takes advantage of correlations and satisfies the constraints in the problem

Other techniques

- Graphical models (conditional random fields, Bayesian networks)
- Bayesian model averaging

The importance of features and their representation

Choosing the right features is one of the most important aspects of applying ML.

What you can do with features:

- Normalization
- Selection
- ♦ Construction
- Fill in missing values

Types of models

Geometric

- Ridge-regression, SVM, perceptron
- Neural networks

Distance-based

K-nearest-neighbors

Probabilistic

Naïve-bayes

$$P(Y = \text{spam}|\text{Viagara, lottery})$$

Logical models: Tree/Rule based Decision trees

Ensembles

Loss + regularization

Many of the models we studied are based on a cost function of the form:

loss + regularization

Example: Ridge regression

$$\frac{1}{N} \sum_{i=1}^{N} (y_i - \mathbf{w}^{\mathsf{T}} \mathbf{x}_i)^2 + \lambda \mathbf{w}^{\mathsf{T}} \mathbf{w}$$

Loss + regularization for classification

SVM
$$\frac{C}{N} \sum_{i=1}^{N} \max\left[1 - y_i h_{\mathbf{w}}(\mathbf{x}_i), 0\right] + \frac{1}{2} \mathbf{w}^{\mathsf{T}} \mathbf{w}$$

Hinge loss L_2 regularizer

The hinge loss is a margin maximizing loss function

Can use other regularizers: $||\mathbf{w}||_1$ (L₁ norm) Leads to very sparse solutions and is non-differentiable.

Elastic Net regularizer: $\alpha ||\mathbf{w}||_1 + (1 - \alpha)||\mathbf{w}||_2^2$

Loss + regularization for classification

SVM
$$\frac{C}{N} \sum_{i=1}^{N} \max\left[1 - y_i h_{\mathbf{w}}(\mathbf{x}_i), 0\right] + \frac{1}{2} \mathbf{w}^{\mathsf{T}} \mathbf{w}$$
Hinge loss L_2 regularizer

Logistic regression

$$\frac{1}{N} \sum_{i=1}^{N} \log(1 + \exp(y_i h_{\mathbf{w}}(\mathbf{x}_i)) + \frac{\lambda}{2} \mathbf{w}^{\mathsf{T}} \mathbf{w}$$
Log loss L_2 regularizer

AdaBoost can be shown to optimize the exponential loss

$$\frac{1}{N}\sum_{i=1}^{N}\exp(-y_ih_{\mathbf{w}}(\mathbf{x}_i))$$

Loss + regularization for regression

Ridge regression
$$\frac{1}{N} \sum_{i=1}^{N} (y_i - \mathbf{w}^{\mathsf{T}} \mathbf{x})^2 + \lambda \mathbf{w}^{\mathsf{T}} \mathbf{w}$$

Closed form solution; sensitivity to outliers

Lasso

$$\frac{1}{N} \sum_{i=1}^{N} (y_i - \mathbf{w}^\mathsf{T} \mathbf{x})^2 + \lambda ||\mathbf{w}||_1$$

Sparse solutions; non-differentiable

Can use alternative loss functions

N

Comparison of learning methods

TABLE 10.1. Some characteristics of different learning methods. Key: $\blacktriangle = good$, $\diamond = fair$, and $\blacktriangledown = poor$.

Characteristic	Neural	SVM	Trees	random	k-NN,	
	Nets		forests			
Natural handling of data of "mixed" type		▼			▼	
Handling of missing values		▼				
Robustness to outliers in input space	▼	▼				
Insensitive to monotone transformations of inputs	•	▼			▼	
Computational scalability (large N)					▼	
Ability to deal with irrel- evant inputs		▼			▼	
Ability to extract linear combinations of features			▼	▼	•	
Interpretability		▼	•			
Predictive power			▼	,	•	

Table 10.1 from "Elements of statistical learning"

Comparison of learning methods

TABLE 10.1. Some characteristics of different learning methods. Key: $\blacktriangle = good$, $\diamond = fair$, and $\blacktriangledown = poor$.

Characteristic	Neural	SVM	Trees	MARS	k-NN,
	Nets				Kernels
Natural handling of data of "mixed" type		▼			▼
Handling of missing values		▼			
Robustness to outliers in input space	•	▼		▼	
Insensitive to monotone transformations of inputs		▼		▼	▼
Computational scalability (large N)	•	▼			▼
Ability to deal with irrel- evant inputs	•	▼			▼
Ability to extract linear combinations of features			•	▼	•
Interpretability		▼	•		
Predictive power				•	

Table 10.1 from "Elements of statistical learning"

The scikit-learn algorithm cheat sheet

https://medium.com/@chris_bour/an-extended-version-of-the-scikit-learn-cheat-sheet-5f46efc6cbb#.g942x8l3d 19

Applying machine learning

Always try multiple models

• What would you start with?

If accuracy is not high enough

- Design new features
- Collect more data