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SVM:  error +regularization? 

Recall that most classifiers are based on a cost 
function that has the form 
 
            error term + regularization term 
 
Let’s express the SVM optimization problem in this 
form.  
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The hinge loss 

The primal form of the SVM: 
 
 
 
 
Let’s define: 
 
 
 
The SVM problem now can be written as: 
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Hinge loss 



SVM:  error + regularization 
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Esvm is an upper bound on Ein 
and is a margin-maximizing  
error function 
 



L1 Regularization 

Regular SVM uses ||w||2 as the regularizer 
 
Another option: 
 
This is the L1 regularizer (aka Lasso), which is known to 
lead to very sparse solutions.   
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L1 Regularization 

The L1 regularizer tends to generate much sparser 
solutions than a quadratic regularizer.  

Figure adapted from http://stats.stackexchange.com/questions/45643/why-l1-norm-for-sparse-models 



L1 Regularization 

The L1 regularizer tends to generate much sparser 
solutions than a quadratic regularizer.  
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The role of the soft margin parameter 

SVM for the non-separable case: 
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The role of the soft margin parameter 

SVM for the non-separable case: 
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Soft margin is useful even if the data is linearly separable! 
 



A potential problem for unbalanced data 

SVM for the non-separable case: 
 
 
 
 
 
 
              is the penalty for misclassification 
 
 
If there are only a few positive examples, the penalty for 
misclassifying them will be small. 
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What happens when data is unbalanced 

 
 
 
 
 
 
 
 
 
 
 
 
The SVM is essentially ignoring the minority class! 
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Solving the problem 

Replace 
 
 
With: 
 
 
Choosing the parameters such that: 
 
 
A choice that achieves this: 
 
 
 
Essentially optimizes balanced error rather than regular error 
rate.  
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Effect of unequal soft-margin constants 

Comparing the two ways of choosing the soft-margin 
constant: 
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C inversely proportional to class 
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Equal C 



Interim conclusions 

SVMs: 
u  Deliver a large-margin hyperplane, and in so doing can 

control the effective model complexity.  
u  Express the hyperplane using only a few support 

vectors 
u  Control the sensitivity to outliers and regularize the 

solution through setting C appropriately.  
 
Coming next: 
u  Nonlinearity. 
  
These properties make SVMs one of the most useful 
classification approaches 
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SVMs for regression 

SVR – SVM Regression 
 
Based on the epsilon-insensitive loss: 
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Fig. 2. Example of a linear SVM regression and the ✏-insensitive loss function

(adapted from [26])
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