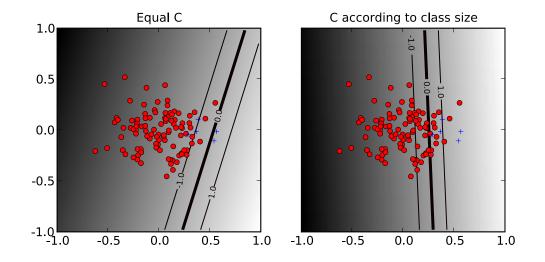
SVMs: error, regularization and unbalanced data

Chapter e-8



SVM: error +regularization?

Recall that most classifiers are based on a cost function that has the form

error term + regularization term

Let's express the SVM optimization problem in this form.

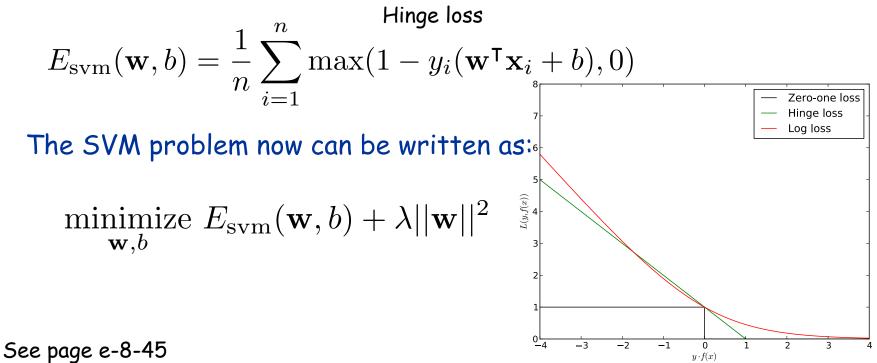
The hinge loss

The primal form of the SVM:

$$\underset{\mathbf{w},b}{\text{minimize}} \frac{1}{2} ||\mathbf{w}||^2 + C \sum_{i=1}^n \xi_i$$

subject to: $y_i(\mathbf{w}^\mathsf{T}\mathbf{x}_i + b) \ge 1 - \xi_i, \ \xi_i \ge 0, \ i = 1, \dots, n.$

Let's define:



SVM: error + regularization

$$\underset{\mathbf{w},b}{\text{minimize }} E_{\text{svm}}(\mathbf{w},b) + \lambda ||\mathbf{w}||^2$$

$$E_{\text{svm}}(\mathbf{w}, b) = \frac{1}{n} \sum_{i=1}^{n} \max(1 - y_i(\mathbf{w}^{\mathsf{T}}\mathbf{x}_i + b), 0)$$

$$E_{\text{svm}} \text{ is an upper bound on } E_{\text{in}}$$

and is a margin-maximizing
error function

$$\lim_{q \to 0} \frac{1}{q} \sum_{i=1}^{n} \max(1 - y_i(\mathbf{w}^{\mathsf{T}}\mathbf{x}_i + b), 0)$$

$$\lim_{q \to 0} \frac{1}{q} \sum_{i=1}^{n} \frac{1}{q}$$

L₁ Regularization

Regular SVM uses $||\mathbf{w}||^2$ as the regularizer

Another option:
$$||\mathbf{w}||_1 = \sum_i |w_i|_i$$

This is the L_1 regularizer (aka Lasso), which is known to lead to very sparse solutions.

L₁ Regularization

The L_1 regularizer tends to generate much sparser solutions than a quadratic regularizer.

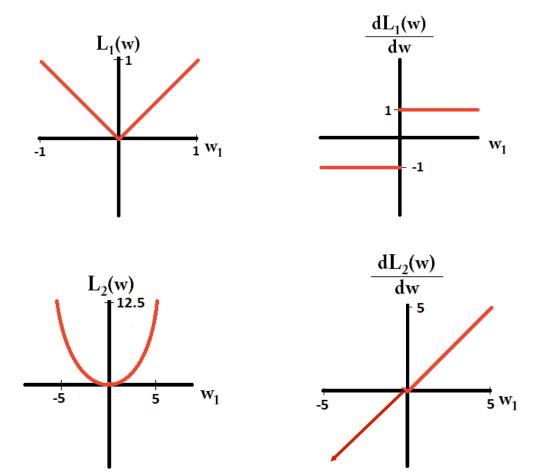
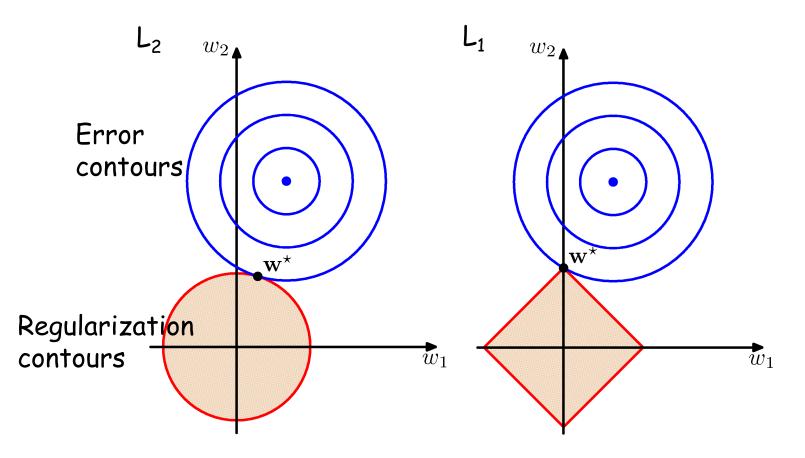


Figure adapted from http://stats.stackexchange.com/questions/45643/why-l1-norm-for-sparse-models

L₁ Regularization

The L_1 regularizer tends to generate much sparser solutions than a quadratic regularizer.

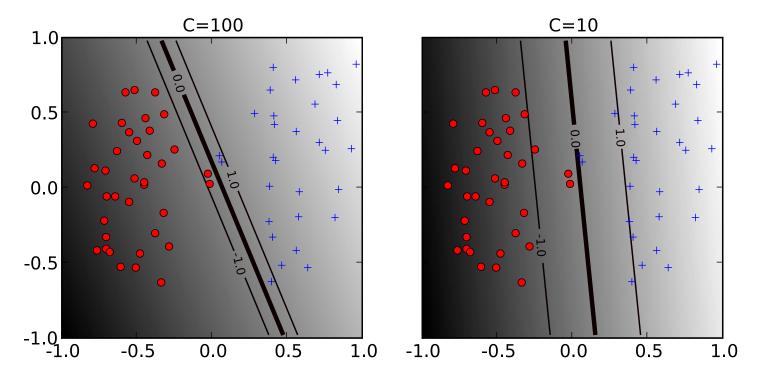


The role of the soft margin parameter

SVM for the non-separable case:

$$\underset{\mathbf{w},b}{\text{minimize}} \frac{1}{2} ||\mathbf{w}||^2 + C \sum_{i=1}^n \xi_i$$

subject to: $y_i(\mathbf{w}^\mathsf{T}\mathbf{x}_i + b) \ge 1 - \xi_i, \ \xi_i \ge 0, \ i = 1, \dots, n.$

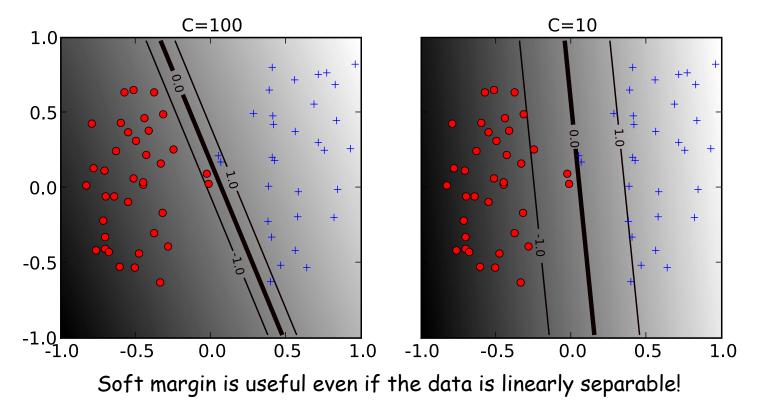


The role of the soft margin parameter

SVM for the non-separable case:

$$\underset{\mathbf{w},b}{\text{minimize}} \frac{1}{2} ||\mathbf{w}||^2 + C \sum_{i=1}^n \xi_i$$

subject to: $y_i(\mathbf{w}^\mathsf{T}\mathbf{x}_i + b) \ge 1 - \xi_i, \ \xi_i \ge 0, \ i = 1, \dots, n.$



A potential problem for unbalanced data

SVM for the non-separable case:

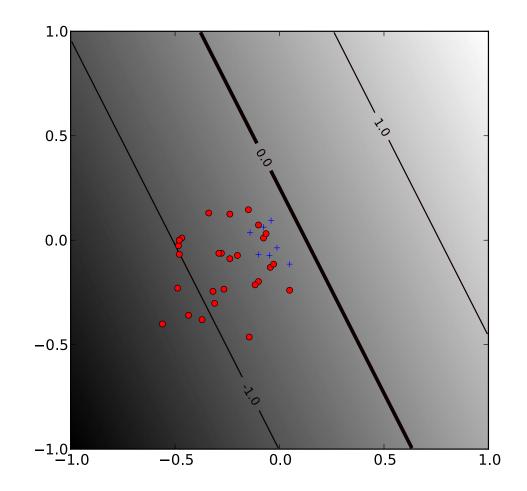
$$\underset{\mathbf{w},b}{\operatorname{minimize}} \frac{1}{2} ||\mathbf{w}||^2 + C \sum_{i=1}^n \xi_i$$

subject to: $y_i(\mathbf{w}^\mathsf{T}\mathbf{x}_i + b) \ge 1 - \xi_i, \ \xi_i \ge 0, \ i = 1, \dots, n.$

$$C\sum_{i=1}^n \xi_i$$
 is the penalty for misclassification

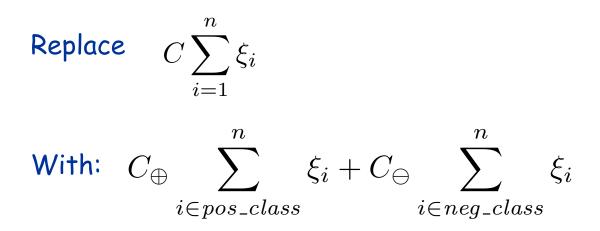
If there are only a few positive examples, the penalty for misclassifying them will be small.

What happens when data is unbalanced



The SVM is essentially ignoring the minority class!

Solving the problem



Choosing the parameters such that:

$$C_{\oplus}Pos \approx C_{\ominus}Neg$$

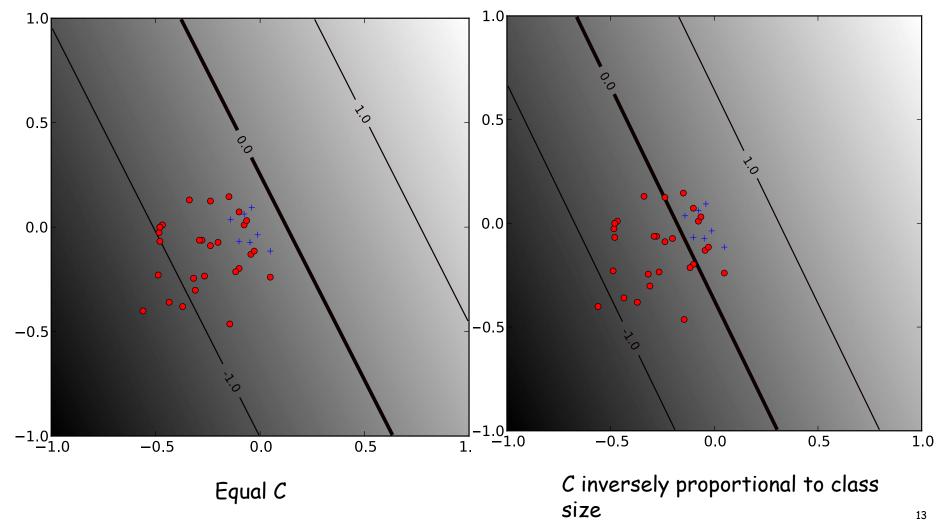
A choice that achieves this:

$$C_{\oplus} = C \frac{n}{Pos}, \quad C_{\ominus} = C \frac{n}{Neg}$$

Essentially optimizes balanced error rather than regular error rate.

Effect of unequal soft-margin constants

Comparing the two ways of choosing the soft-margin constant:



Interim conclusions

SVMs:

- Deliver a large-margin hyperplane, and in so doing can control the effective model complexity.
- Express the hyperplane using only a few support vectors
- Control the sensitivity to outliers and regularize the solution through setting C appropriately.

Coming next:

Nonlinearity.

These properties make SVMs one of the most useful classification approaches

SVMs for regression

SVR - SVM Regression

Based on the epsilon-insensitive loss:

