
Lecture 10: Suffix trees, suffix arrays, and
their applications

Spring 2020
March 12, 2020

1

Trie

A tree representing a set of strings.

a
b

c

e

e

f

d b

f

e g

{aeef, ad, bbfe, bbfg, c}

Assume no string is a prefix of another

a
b

c

e

e

f

d b

f

e g

Each edge is labeled by a letter,
no two edges outgoing from
the same node have the same
label.

Each string corresponds to a
leaf.

Trie

Compress nodes with single outgoing edge, label edges by
strings

a
b

c

e

e

f

d b

f

e g

a

bbf

c

eef
d

e g

è

Compressed Trie

Given a string T, a suffix tree of T is a compressed
trie of all suffixes of T

To make these suffixes prefix-free we add a special
character, say $, at the end of T

Suffix tree

Suffix tree for the string T=abab$

{$, b$, ab$,bab$, abab$}

a
b

a
b

$

a
b
$

b

$

$

$

Example

A suffix tree for an m-character string T:
q A rooted directed tree with exactly m leaves numbered from 1 to m.
q Each internal node, other than root, has at least two children and each

edge is labeled with a non-empty substring of T.
q No two edges out of a node can have edge-labels beginning with the

same character.
q For any leaf i, the concatenation of the edge-labels on the path from

the root to leaf i exactly spells out the suffix of T that starts at position
i, that is, spells out T[i,…,m].

7

a
b

a
b

$

a
b
$

b

$

$

$

Suffix tree

Constructing suffix tree for T=abab$

Insert the longest suffix

Next longest

a
b
ab

$

a
b
ab

$

a
b
$

b

Naïve algorithm to build suffix tree

Insert the suffix ab$

a
b
ab

$

a
b
$

b

a
b

a
b

$

a
b
$

b

$

Insert the suffix b$

a
b

a
b

$

a
b
$

b

$

a
b

a
b

$

a
b
$

b

$

$

Insert the suffix $

a
b

a
b

$

a
b
$

b

$

$

a
b

a
b

$

a
b
$

b

$

$

$

label each leaf with the starting position of the corresponding suffix.

a
b

a
b

$

a
b
$

b

$

$

$

1
2

a
b

a
b

$

a
b
$

b

3

$ 4

$
5

$

How long does it take to construct a suffix
tree for a text of length m?

Analysis

How long does it take to construct a suffix
tree for a text of length m?

O(m) to insert a given suffix, so O(m2) overall.

There are algorithms that do it in O(m)!
(Weiner 1973, McCreight 1976, Ukkonen
1975)

Analysis

Exact string matching:
Given a Text T, |T| = m, and a string s, |s| = n,
does s occur in T?

Naïve solution: search for occurrence of s at
every position in T.
Running time?

Using suffix trees: Construct suffix tree for T.
How do we now check if s occurs in T?

What can we do with it?

1
2

a
b

a
b

$

a
b
$

b

3

$ 4

$
5

$

Is aba a substring of T=abab?

Exact string matching

1
2

a
b

a
b

$

a
b
$

b

3

$ 4

$
5

$

Is aba a substring of T=abab?

Traverse the tree using the string.

Exact string matching

1
2

a
b

a
b

$

a
b
$

b

3

$ 4

$
5

$

If we did not get stuck traversing the pattern then the
pattern occurs in the text.

Each leaf in the subtree below the node we reach
corresponds to an occurrence.

By traversing this subtree we get all k occurrences in O(n+k)
time.

19

T: xabxac
s: xa

Another example

q Build the suffix tree: O(m)

q Match P to the unique path: O(n)

q Traverse the tree below the last matching
point: O(k), where k is the number of
occurrences, i.e., the number of leaves
below the last matching point.

q Overall O(m+n+k).
20

Running time

Problem: Matching a string against a database of strings

A collection of strings

A generalized suffix tree for t1=abab and t2=aab

{
$ #
b$ b#
ab$ ab#
bab$ aab#
abab$

}

1

2

a

b

a
b

$

a
b
$

b

3

$

4

$

5
$

1

b
#

a

2

#

3

#
4

#

Generalized suffix tree

Given a set of strings T a generalized suffix tree of
T is a compressed trie of all suffixes of t Î T.

To associate each suffix with a unique string in T
add a different special character to each string in
T.

Generalized suffix tree

• Inexact string matching; used in motif
finding (e.g. the Weeder algorithm)

• Longest common substring

• Repeats/tandem repeats

• Maximal palindromes

24

More application

Suffix trees consume a lot of space:
It is O(m) but the constant is quite big. Cannot
fit a large mammalian genome in memory.

Notice that if we indeed want to traverse an
edge in O(1) time then we need an array of
pointers of size |Σ| in each node. Otherwise,
use a linked list, and traversal time depends on
|Σ|.

Drawbacks

Use less space, but not as fast.

Let T = abab.

Sort the suffixes lexicographically:
ab, abab, b, bab
The suffix array gives the indices of the
suffixes in sorted order.

3 1 4 2

Suffix arrays

T = mississippi
i
ippi
issippi
ississippi
mississippi
pi

8

5

2

1

10

9

7

4

11

6

3

ppi
sippi
sissippi
ssippi
ssissippi

L

R

s = issa

M

Example

If s occurs in T then all its occurrences are
consecutive in the suffix array.

Do a binary search on the suffix array.

Takes O(n log m) time.

Note the connection with BWT. Essentially,
BWT[i] is S[SA[i]-1 mod length] for sequence S
and suffix array SA of S.

Searching a suffix array

Build a suffix tree. Traverse the tree in DFS,
lexicographically picking edges outgoing from
each node and fill the suffix array: O(m) time.

But if our objective was to save space, do it
directly: O(mr log m) time, r = longest repeat
length.

Constructing a suffix array

