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Nearest Neighbor Model
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McCaskill’s Algorithm for MFE Structure (1990)
Notation

◮ straight horizontal line: nucleotides indexed from 1 to n.

◮ solid arc: a base pair.

◮ dashed arc: can be base pair or not.

◮ white region: open to more recursions.

◮ cyan region: finalized in the recursion, compute its energy contribution.

◮ MFE stands for minimum free energy.
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McCaskill’s Algorithm for MFE Structure (1990)
General Case

= bi j i j i j

k1 k2

S(i, j) = min















Gunfolded(i, j)

Gunfolded(i,k1 −1)+Sb(k1,k2)+S(k2 +1, j)
for i ≤ k1 < k2 ≤ j
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McCaskill’s Algorithm for MFE Structure (1990)
Stack/Loop Case

=
b

bi j i j i

k1 k2

j i jb

k1 k2

bz

Sb(i, j) = min































Ghairpin(i, j)

Gstack/bulge/int(i,k1,k2, j)+Sb(k1,k2)

a1 +a2(k1 − i−1)+2a3 +Sb(k1,k2)+Sbz(k2 +1, j−1)
for i < k1 < k2 < j

Recall that multiloop energy is a1 +a2U +a3P.
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McCaskill’s Algorithm for MFE Structure (1990)
Multiloop Case

=
bz

mbi j ji
k2k1

Sbz(i, j) = min

{

a2(k1 − i)+a3 +Sb(k1,k2)+Sm(k2 +1, j)
for i ≤ k1 < k2 ≤ j

Recall that multiloop energy is a1 +a2U +a3P.
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McCaskill’s Algorithm for MFE Structure (1990)
Multiloop Case (continued)

= b
m

mi j i j i j

k1 k2

Sm(i, j) = min







a2( j− i+1)
a2(k1 − i)+a3 +Sb(k1,k2)+Sm(k2 +1, j)
for i ≤ k1 < k2 ≤ j

Recall that multiloop energy is a1 +a2U +a3P.
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Ahhh...but MFE is often biologically not-so-relevant!

Question: how about

1. computing base pairing probabilities,

2. sampling from the Boltzmann ensemble structures, clustering, centroids,

etc.,

3. and computing equilibrium concentrations and melting temperature?

Answer: the key enabling technology is the partition function. All of the

above can be computed from the partition function.
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Partition Function

Q(T ) = ∑ f∈F e−G f /RT ,

F : All permissible foldings, i.e. the Boltzmann ensemble,

T : Temperature,

R : Gas constant,

p( f ) ∝ e−G f /RT ,

and Q is the normalizing factor. Also other thermodynamic quantities can be

derived from Q.
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Partition Function Hardness ≥ MFE Hardness

Partition function

∑
f∈F

e−G f /RT .

MFE secondary structure

argmin f∈F G f .

Transform any partition function dynamic programming to an MFE algorithm by

e−G f → G f

×→+

∑ → min .
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MFE → Partition Function
Not always possible

In the partition function

∑
f∈F

e−G f /RT ,

every structure f is taken into account exactly once, whereas in the structure

prediction

argmin f∈F G f ,

every structure f is taken into account at least once.

Transform an unambiguous MFE dynamic programming to a partition function

algorithm by

G f → e−G f

+→×

min → ∑ .
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McCaskill’s Algorithm (1990)
General Case

= bi j i j i j

k1 k2

Q(i, j) = e−Gunfolded(i, j)/RT+

∑
i≤k1<k2≤ j

e−Gunfolded(i,k1−1)/RT Qb(k1,k2)Q(k2 +1, j).
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McCaskill’s Algorithm (1990)
Stack/Loop Case

=
b

bi j i j i

k1 k2

j i jb

k1 k2

bz

Qb(i, j) = e
−Ghairpin(i, j)/RT+

∑
i<k1<k2< j

e
−Gstack/bulge/int(i,k1,k2, j)/RT

Qb(k1,k2)+

∑
i<k1<k2< j

e−[a1+a2(k1−i−1)+2a3]/RT Qb(k1,k2)Qbz(k2 +1, j−1).

Recall that multiloop energy is a1 +a2U +a3P.
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McCaskill’s Algorithm (1990)
Multiloop Case

=
bz

mbi j ji
k2k1

Qbz(i, j) = ∑
i≤k1<k2≤ j

e−[a2(k1−i)+a3]/RT Qb(k1,k2)Qm(k2 +1, j).

Recall that multiloop energy is a1 +a2U +a3P.
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McCaskill’s Algorithm (1990)
Multiloop Case (continued)

= b
m

mi j i j i j

k1 k2

Qm(i, j) = e−a2( j−i+1)/RT+

∑
i≤k1<k2≤ j

e−[a2(k1−i)+a3]/RT Qb(k1,k2)Qm(k2 +1, j).

Recall that multiloop energy is a1 +a2U +a3P.
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Ordering is important

◮ Pay attention to the order in which Q(i, j), Qb(i, j), Qbz(i, j), and Qm(i, j)
are computed.

◮ For instance, Qm depends on Qb because it has Qb(i, j) as a term in its

sum.

◮ Correct ordering: first Qb then Qm, Qbz, and Q in parallel.
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