Lecture 6: RNA-RNA interaction

Hamidreza Chitsaz

Colorado State University chitsaz@cs.colostate.edu

Spring 2020 February 18,20, 2020

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 - 釣ん()>

1/54,

Central dogma

 $\mathsf{DNA} \to \mathsf{RNA} \to \mathsf{Protein}$

▲ロト ▲園 ト ▲ 国 ト ▲ 国 ト 一 国 - の Q ()

2/54.

Motivation

Post-transcriptional regulation of gene expression

Regulatory RNA

Repression example (Argaman and Altuvia, J. Mol. Biol. 2000)

Regulatory RNA

Activation example (Repoila, Majdalani, and Gottesman, Mol. Microbiol. 2003)

RNA-RNA MFE structure prediction

Avoid intramolecular base pairing RNAhybrid (Rehmsmeier et al. 2004), RNAduplex (Bernhart et al. 2006), UNAFold (Markham et al. 2008) No internal structure

イロト イボト イヨト イヨト 一日

- Concatenate input sequences as a single strand; no pseudoknots PairFold (Andronescu et al. 2005), RNAcofold (Bernhart et al. 2006) No kissing hairpins
- Predict binding sites RNAup (Mückstein et al. 2008), intaRNA (Busch et al. 2008) Just one binding site not complete structure
- Concatenate input sequences; consider special pseudoknots NUPACK (Dirks et al. 2003,2007)

RNA-RNA MFE structure prediction

 Avoid intramolecular base pairing RNAhybrid (Rehmsmeier et al. 2004), RNAduplex (Bernhart et al. 2006), UNAFold (Markham et al. 2008) No internal structure

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ ○ ●

Concatenate input sequences as a single strand; no pseudoknots PairFold (Andronescu *et al.* 2005), RNAcofold (Bernhart *et al.* 2006) No kissing hairpins

Predict binding sites RNAup (Mückstein et al. 2008), intaRNA (Busch et al. 2008) Just one binding site not complete structure

 Concatenate input sequences; consider special pseudoknots NUPACK (Dirks et al. 2003,2007)

RNA-RNA MFE structure prediction

 Avoid intramolecular base pairing RNAhybrid (Rehmsmeier et al. 2004), RNAduplex (Bernhart et al. 2006), UNAFold (Markham et al. 2008) No internal structure

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ ○ ●

Concatenate input sequences as a single strand; no pseudoknots PairFold (Andronescu *et al.* 2005), RNAcofold (Bernhart *et al.* 2006) No kissing hairpins

Predict binding sites RNAup (Mückstein et al. 2008), intaRNA (Busch et al. 2008) Just one binding site not complete structure

 Concatenate input sequences; consider special pseudoknots NUPACK (Dirks et al. 2003,2007)

RNA-RNA MFE structure prediction

 Avoid intramolecular base pairing RNAhybrid (Rehmsmeier et al. 2004), RNAduplex (Bernhart et al. 2006), UNAFold (Markham et al. 2008) No internal structure

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ ○ ●

Concatenate input sequences as a single strand; no pseudoknots PairFold (Andronescu *et al.* 2005), RNAcofold (Bernhart *et al.* 2006) No kissing hairpins

Predict binding sites RNAup (Mückstein et al. 2008), intaRNA (Busch et al. 2008) Just one binding site not complete structure

 Concatenate input sequences; consider special pseudoknots NUPACK (Dirks et al. 2003,2007)

Background (continued)

RNA-RNA MFE structure prediction

Consider inter- and intramolecular base pairing

IRIS (Pervouchine 2004), **inteRNA** (Alkan *et al.* 2005), **Grammatical Approach** (Kato *et al.* 2009) Voilà, now we are talking business.

The problem is NP-Hard (Alkan *et al.* 2005); no surprise as pseudoknots are NP-Hard. Exclude *zigzags* and crossing interactions to lift the curse of complexity and obtain an exact $O(n^6)$ -time $O(n^4)$ -space DP algorithm (albeit for simple base-pair counting).

First order zigzag. A general zigzag involves an arbitrary number of kissing hairpins.

(日)(周)((日)(日)(日)(日)

Question: how about

1. computing base pairing probabilities,

- 2. sampling from the Boltzmann ensemble of interaction structures, clustering, centroids, etc.,
- 3. and computing equilibrium concentrations and melting temperature for RNA-RNA compounds?

Answer: the key enabling technology is the **partition function**. All of the above can be computed from the partition function.

・ロト ・ 四ト ・ ヨト ・ ヨー ・ つ へ つ

Question: how about

- 1. computing base pairing probabilities,
- 2. sampling from the Boltzmann ensemble of interaction structures, clustering, centroids, etc.,
- 3. and computing equilibrium concentrations and melting temperature for RNA-RNA compounds?

Answer: the key enabling technology is the **partition function**. All of the above can be computed from the partition function.

Question: how about

- 1. computing base pairing probabilities,
- 2. sampling from the Boltzmann ensemble of interaction structures, clustering, centroids, etc.,
- 3. and computing equilibrium concentrations and melting temperature for RNA-RNA compounds?

Answer: the key enabling technology is the **partition function**. All of the above can be computed from the partition function.

Question: how about

- 1. computing base pairing probabilities,
- 2. sampling from the Boltzmann ensemble of interaction structures, clustering, centroids, etc.,
- 3. and computing equilibrium concentrations and melting temperature for RNA-RNA compounds?

▲ロト ▲園 ト ▲ 国 ト ▲ 国 ト 一 国 - の Q ()

Answer: the key enabling technology is the **partition function**. All of the above can be computed from the partition function.

Partition function

$$Q(T) = \sum_{f \in F} e^{-G_f/RT},$$

 $F = \text{All permissible interaction structures},$

$$p(f) \propto e^{-G_f/RT},$$

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 − のへで

and Q is the normalizing factor. Also other thermodynamic quantities can be derived from Q.

Partition function

$$Q(T) = \sum_{f \in F} e^{-G_f/RT},$$

 $F =$ All permissible interaction structures,

$$p(f) \propto e^{-G_f/RT},$$

and Q is the normalizing factor. Also other thermodynamic quantities can be derived from Q.

Our extension of the Turner model

Chitsaz et al., Bioinformatics 25(12): i365-i373

イロト イロト イヨト イヨト

э

Hybrid component: as if intramolecular, with penalties. Kissing loop: like multibranch loop.

10/54,

Partition function for two strands

straight vertical line: intermolecular bond solid: a base pair dotted: not a base pair dashed: either of those two

 $Q_{i_{R},j_{R},i_{S},j_{S}}^{I} = Q_{i_{R},j_{R}}Q_{i_{S},j_{S}} + \sum_{\substack{i_{R} \le k_{1} < j_{R} \\ i_{S} < k_{2} \le j_{S}}} Q_{i_{R},k_{1}-1}Q_{k_{2}+1,j_{S}}Q_{k_{1},j_{R},i_{S},k_{2}}^{Ib} +$ $\sum Q_{i_R,k_1-1}Q_{k_2+1,j_S}Q_{k_1,j_R,i_S,k_2}^{Ia}.$

 $\sum_{\substack{i_R \leq k_1 < j_R \\ i_S < k_2 \leq j_S}} \mathcal{Q}_{i_R,k_1-1} \mathcal{Q}_{k_2+1,j_S} \mathcal{Q}_{k_1,j_R,i_S,k_2}^{i_a}.$

<ロ> (四) (四) (三) (三) (三) (三)

Partition function for two strands

straight vertical line: intermolecular bond solid: a base pair dotted: not a base pair dashed: either of those two

$$\mathcal{Q}_{i_{R},j_{R},i_{S},j_{S}}^{I} = \mathcal{Q}_{i_{R},j_{R}} \mathcal{Q}_{i_{S},j_{S}} + \sum_{\substack{i_{R} \leq k_{1} < j_{R} \\ i_{S} < k_{2} \leq j_{S}}} \mathcal{Q}_{i_{R},k_{1}-1} \mathcal{Q}_{k_{2}+1,j_{S}} \mathcal{Q}_{k_{1},j_{R},i_{S},k_{2}}^{Ib} + \sum_{\substack{i_{R} \leq k_{1} \leq j_{R} \\ i_{S} < k_{2} \leq j_{S}}} \mathcal{Q}_{i_{R},k_{1}-1} \mathcal{Q}_{k_{2}+1,j_{S}} \mathcal{Q}_{k_{1},j_{R},i_{S},k_{2}}^{Ia} \cdot$$

Partition function for two strands

straight vertical line: intermolecular bond solid: a base pair dotted: not a base pair dashed: either of those two

$$\begin{aligned} \mathcal{Q}_{i_{R},j_{R},i_{S},j_{S}}^{I} = & \mathcal{Q}_{i_{R},j_{R}} \mathcal{Q}_{i_{S},j_{S}} + \sum_{\substack{i_{R} \leq k_{1} < j_{R} \\ i_{S} < k_{2} \leq j_{S}}} \mathcal{Q}_{i_{R},k_{1}-1} \mathcal{Q}_{k_{2}+1,j_{S}} \mathcal{Q}_{k_{1},j_{R},i_{S},k_{2}}^{Ib} + \\ & \sum_{\substack{i_{R} \leq k_{1} < j_{R} \\ i_{S} < k_{2} \leq j_{S}}} \mathcal{Q}_{i_{R},k_{1}-1} \mathcal{Q}_{k_{2}+1,j_{S}} \mathcal{Q}_{k_{1},j_{R},i_{S},k_{2}}^{Ia}. \end{aligned}$$

b: stands for bond

Q^{Ia}

- *a*: stands for arc
- s: stands for subsume
- e: stands for equivalent

Q^{Is} and Q^{Ie}

e: stands for equivalent

ヘロト 人間 とくほとくほとう

æ

◆□ > ◆□ > ◆臣 > ◆臣 > ─臣 ─ のへで

16/54.

18/54,

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

20/54.

23/54.

31/54,

▲□▶▲□▶▲□▶▲□▶ □ のへ⊙

33/54.

▲□▶▲□▶▲□▶▲□▶ ▲□ シスペ

34/54.

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬぐ

42/54,

Equilibrium concentrations

For two RNAs \boldsymbol{R} and \boldsymbol{S}

Assume five types of chemical compounds: **R**, **S**, **RR**, **SS**, **RS**. Solve

$$\begin{split} K_{\mathbf{R}} &= \frac{Q_{\mathbf{R}\mathbf{R}}^{I}}{Q_{\mathbf{R}}^{2}} = \frac{N_{\mathbf{R}\mathbf{R}}}{N_{\mathbf{R}}^{2}},\\ K_{\mathbf{S}} &= \frac{Q_{\mathbf{S}\mathbf{S}}^{I}}{Q_{\mathbf{S}}^{2}} = \frac{N_{\mathbf{S}\mathbf{S}}}{N_{\mathbf{S}}^{2}},\\ K_{\mathbf{R}\mathbf{S}} &= \frac{Q_{\mathbf{R}\mathbf{S}}^{I}}{Q_{\mathbf{R}}Q_{\mathbf{S}}} = \frac{N_{\mathbf{R}\mathbf{S}}}{N_{\mathbf{R}}N_{\mathbf{S}}},\\ N_{\mathbf{R}\mathbf{S}} &= N_{\mathbf{R}}^{0} - 2N_{\mathbf{R}\mathbf{R}} - N_{\mathbf{R}} = N_{\mathbf{S}}^{0} - 2N_{\mathbf{S}\mathbf{S}} - N_{\mathbf{S}}, \end{split}$$

to obtain the equilibrium concentrations N. N^0 are the initial concentrations of single strands.

Equilibrium concentration of OxyS with wild type fhIA

Equilibrium concentration of OxyS with fhIA mutants

Melting temperature prediction

Comparison of piRNA results over three data sets

Set	Size	Length	Avg error		
			piRNA	RNAcofold	UNAFold
Ι	9 short pairs	5-7nt	1.48°C	9.35°C	8.55°C
П	12 pairs	~ 20 nt	4.86° C	22.97°C	9.12°C
	62 pairs	22 - 40nt	1.91°C	14.34°C	26.53°C

Set	Size	Length	Spearman rank correlation		
			piRNA	RNAcofold	UNAFold
I	9 short pairs	5-7nt	0.97	0.97	0.57
II	12 pairs	~ 20 nt	0.41	-0.03	0.1
	62 pairs	22 - 40nt	0.3	-0.04	0.24