
An Overview of GCC Architecture (source: wikipedia)

CS553 Lecture Control-Flow, Dominators, Loop Detection, and SSA 1

CS553 Lecture Control-Flow, Dominators, Loop Detection, and SSA 2

Control-Flow Analysis and Loop Detection

  Last time
–  Lattice-theoretic framework for data-flow analysis

  Today
–  Control-flow analysis
–  Loops
–  Identifying loops using dominators
–  Converting to SSA using dominators
–  Dominators and PA2

  

CS553 Lecture Control-Flow, Dominators, Loop Detection, and SSA 3

Context

  Data-flow
–  Flow of data values from defs to uses
–  Could alternatively be represented as a data dependence

  Control-flow
–  Sequencing of operations
–  Could alternatively be represented as a control dependence
–  e.g., Evaluation of then-code and else-code depends on if-test

CS553 Lecture Control-Flow, Dominators, Loop Detection, and SSA 4

Why study control flow analysis?

  Finding Loops
–  most computation time is spent in loops
–  to optimize them, we need to find them

  Loop Optimizations
–  Loop-invariant code hoisting
–  Induction variable elimination
–  Array bounds check removal
–  Loop unrolling
–  Parallelization
–  ...

  Identifying structured control flow
–  can be used to speed up data-flow analysis

CS553 Lecture Control-Flow, Dominators, Loop Detection, and SSA 5

Representing Control-Flow

  High-level representation
–  Control flow is implicit in an AST

  Low-level representation:
–  Use a Control-flow graph

–  Nodes represent statements
–  Edges represent explicit flow of control

  Other options
–  Control dependences in program dependence graph (PDG) [Ferrante87]
–  Dependences on explicit state in value dependence graph (VDG) [Weise 94]

CS553 Lecture Control-Flow, Dominators, Loop Detection, and SSA 6

What Is Control-Flow Analysis?

  Control-flow analysis discovers the flow of control within a procedure
(e.g., builds a CFG, identifies loops)

  Example

  1 a := 0
  2 b := a * b
  3 L1: c := b/d
  4 if c < x goto L2
  5 e := b / c
  6 f := e + 1
  7 L2: g := f
  8 h := t - g
  9 if e > 0 goto L3
  10 goto L1
  11 L3: return

Yes No

1 a := 0
b := a * b

3 c := b/d
c < x?

5 e := b / c
f := e + 1

7 g := f
h := t - g
e > 0?

10 goto 11 return

CS553 Lecture Control-Flow, Dominators, Loop Detection, and SSA 7

Loop Concepts

  Loop: Strongly connected subgraph of CFG with a single entry point (header)

  Loop entry edge: Source not in loop & target in loop

  Loop exit edge: Source in loop & target not in loop

  Loop header node: Target of loop entry edge. Dominates all nodes in loop.

  Back edge: Target is loop header & source is in the loop

  Natural loop: Associated with each back edge. Nodes dominated by

header and with path to back edge without going through header

  Loop tail node: Source of back edge

  Loop preheader node: Single node that�s source of the loop entry edge

  Nested loop: Loop whose header is inside another loop

CS553 Lecture Control-Flow, Dominators, Loop Detection, and SSA 8

entry edge

Picturing Loop Terminology

preheader

exit edge

loop

back edge

tail

head

CS553 Lecture Control-Flow, Dominators, Loop Detection, and SSA 9

h

t

pre-header p

The Value of Preheader Nodes

  

  Not all loops have preheaders
–  Sometimes it is useful to create them

  Without preheader node
–  There can be multiple entry edges

  With single preheader node
–  There is only one entry edge

  Useful when moving code outside the loop
–  Don�t have to replicate code for multiple entry

edges

h

t

CS553 Lecture Control-Flow, Dominators, Loop Detection, and SSA 10

Identifying Loops

  Why?
–  Most execution time spent in loops, so optimizing loops will often give

most benefit

  Many approaches
–  Interval analysis

–  Exploit the natural hierarchical structure of programs
–  Decompose the program into nested regions called intervals

–  Structural analysis: a generalization of interval analysis
–  Identify dominators to discover loops

  We�ll focus on the dominator-based approach

CS553 Lecture Control-Flow, Dominators, Loop Detection, and SSA 11

Dominators
 d dom i if all paths from entry to node i include d

Strict dominators
   d sdom i if d dom i and d ≠ i

Immediate dominators
   a idom b if a sdom b and there does not exist a node c

such that c ≠ a, c ≠ b, a dom c, and c dom b

Post dominators
   p pdom i if every possible path from i to exit includes

p (p dom i in the flow graph whose arcs are reversed
and entry and exit are interchanged)

d

i

entry

d dom i

p

i

exit

p pdom i

Dominator Terminology

a

b

entry

a idom b

not ∃ c, a sdom c and c sdom b

CS553 Lecture Control-Flow, Dominators, Loop Detection, and SSA 12

Back edges
A back edge of a natural loop is one whose target
dominates its source

Natural loop
 The natural loop of a back edge (m→n), where n
dominates m, is the set of nodes x such that n
dominates x and there is a path from x to m not
containing n

t

s
back edge

n

m

natural
loop

b

c

a

d

e

b

a

c

d

e

The target, c, of the
edge (d→c) does not
dominate its source, d,
so (d→c) does not
define a natural loop

Example
 SCC with c and d not
a loop because has
two entry points

Identifying Natural Loops with Dominators

CS553 Lecture Control-Flow, Dominators, Loop Detection, and SSA 13

Computing Dominators

Input: Set of nodes N (in CFG) and an entry node s
Output: Dom[i] = set of all nodes that dominate node i

Dom[s] = {s}
for each n ∈ N – {s}

 Dom[n] = N
repeat

 change = false
 for each n ∈ N – {s}
 D = {n} ∪ (∩p∈pred(n) Dom[p])
 if D ≠ Dom[n]
 change = true
 Dom[n] = D

until !change

Key Idea
 If a node dominates all
predecessors of node n, then it
also dominates node n

n

pred[n] p1 p2 p3

 x ∈ Dom(p1) ^ x ∈ Dom(p2) ^ x ∈ Dom(p3) ⇒ x ∈ Dom(n)

CS553 Lecture Control-Flow, Dominators, Loop Detection, and SSA 14

{n, p, q, r, s} {n, p, q, r, s} {n, p, q, r, s}

Computing Dominators (example)

Input: Set of nodes N and an entry node s
Output: Dom[i] = set of all nodes that dominate node i

Dom[s] = {s}
for each n ∈ N – {s}
 Dom[n] = N
repeat
 change = false
 for each n ∈ N – {s}
 D = {n} ∪ (∩p∈pred(n) Dom[p])
 if D ≠ Dom[n]
 change = true
 Dom[n] = D
until !change

n

p

r

Initially
 Dom[s] = {s}
 Dom[q] = {n, p, q, r, s}. . .
Finally
 Dom[q] =
 Dom[r] =
 Dom[p] =
 Dom[n] =

s

{n, p, q, r, s}

 {n, p, q, r, s}

 {s}

 {q, s}
 {r, s}
 {p, s}
 {n, p, s}

{n, p, q, r, s} q

{n, p, q, r, s}

 {n, p, q, r, s}

CS553 Lecture Control-Flow, Dominators, Loop Detection, and SSA 15

Recall SSA, Another use of dominator information

  Advantage
–  Allow analyses and transformations to be simpler & more efficient/effective

  Disadvantage
–  May not be �executable� (requires extra translations to and from)
–  May be expensive (in terms of time or space)

  Process

Original Code (RTL)

SSA Code1 SSA Code2 SSA Code3

Optimized Code (RTL)

T1 T2

CS553 Lecture Control-Flow, Dominators, Loop Detection, and SSA 16

Static Single Assignment (SSA) Form

  Idea
–  Each variable has only one static definition
–  Makes it easier to reason about values instead of variables
–  Similar to the notion of functional programming

  Transformation to SSA
–  Rename each definition
–  Rename all uses reached by that assignment

  Example
  v := ...
  ... := ... v ...
  v := ...
  ... := ... v ...

  v0 := ...
  ... := ... v0 ...
  v1 := ...
  ... := ... v1 ...

  What do we do when there�s control flow?

CS553 Lecture Control-Flow, Dominators, Loop Detection, and SSA 17

SSA and Control Flow

  Problem
–  A use may be reached by several definitions

...v... 4

v := ... 2 v := ... 3

1

...v?... 4

v0 :=... 2 v1 :=... 3

1

CS553 Lecture Control-Flow, Dominators, Loop Detection, and SSA 18

SSA and Control Flow (cont)

  Merging Definitions
–  φ-functions merge multiple reaching definitions

  Example

v2 := φ(v0,v1)
...v2...

4

v0 :=... 2 v1 :=... 3

1

CS553 Lecture Control-Flow, Dominators, Loop Detection, and SSA 19

Another Example

v := 1 1

v := v+1 2

v0 := 1 1

v1 := φ(v0,v2)
v2 := v1+1

2

CS553 Lecture Control-Flow, Dominators, Loop Detection, and SSA 20

Transformation to SSA Form

  Two steps
–  Insert φ-functions
–  Rename variables

CS553 Lecture Control-Flow, Dominators, Loop Detection, and SSA 21

Where Do We Place φ-Functions?

  Basic Rule
–  If two distinct (non-null) paths x→z and y→z converge at node z, and

nodes x and y contain definitions of variable v, then a
φ-function for v is inserted at z

v3 := φ(v1,v2)
...v3...

z

v1 :=... x v2 :=... y

CS553 Lecture Control-Flow, Dominators, Loop Detection, and SSA 22

Machinery for Placing φ-Functions

  Recall Dominators
–  d dom i if all paths from entry to node i include d
–  d sdom i if d dom i and d≠i

  Dominance Frontiers
–  The dominance frontier of a node d is the set of nodes that are �just

barely� not dominated by d; i.e., the set of nodes n, such that
–  d dominates a predecessor p of n, and
–  d does not strictly dominate n

–  DF(d) = {n | ∃p∈pred(n), d dom p and d !sdom n}

  Notational Convenience
–  DF(S) = ∪n∈S DF(n)

d

i

entry

d dom i

CS553 Lecture Control-Flow, Dominators, Loop Detection, and SSA 23

Nodes in Dom(5)

 {4, 5, 12, 13}

5

Dominance Frontier Example

2

3 6 7

8

9

11 10

DF(d) = {n | ∃p∈pred(n), d dom p and d !sdom n}

Dom(5) = {5, 6, 7, 8}

5

4

13

12

What�s significant about the Dominance Frontier?

1

In SSA form, definitions must dominate uses

DF(5) =

CS553 Lecture Control-Flow, Dominators, Loop Detection, and SSA 24

Nodes in Dom(5)

 {4, 5, 13}

5

Dominance Frontier Example II

2

3 6 7

8

DF(d) = {n | ∃p∈pred(n), d dom p and d !sdom n}

Dom(5) = {5, 6, 7, 8}

5

4

13

In this graph, node 4 is the first point of convergence between the entry
and node 5, so do we need a φ- function at node 13?

1
DF(5) =

CS553 Lecture Control-Flow, Dominators, Loop Detection, and SSA 25

 {10}
 {10}
 {6}
 {10}
 {6}
 {6,10}

SSA Exercise

6

5 10

3 4 v := ... 8 v := ... 9

v :=... 2 7

1

DF(8) =
DF(9) =
DF(2) =
DF({8,9}) =
DF(10) =
DF({2,8,9,6,10}) =

DF(d) = {n | ∃p∈pred(n), d dom p and d !sdom n}

1 2

3

v4:=φ(v1,v2)

v5:=φ(v3,v4)

See http://www.hipersoft.rice.edu/grads/publications/dom14.pdf for a more thorough description of DF.

CS553 Lecture Control-Flow, Dominators, Loop Detection, and SSA 26

Do we need to insert a φ- function for x anywhere else?

Dominance Frontiers Revisited

Suppose that node 3 defines variable x

DF(3) = {5}

6

2 3 4

5

1

Yes. At node 6. Why?

x ∈ Def(3)

CS553 Lecture Control-Flow, Dominators, Loop Detection, and SSA 27

Dominance Frontiers and SSA

  Let
–  DF1(S) = DF(S)
–  DFi+1(S) = DF(S ∪ DFi(S))

  Iterated Dominance Frontier
–  DF∞(S)

  Theorem
–  If S is the set of CFG nodes that define variable v, then DF∞(S) is the set

of nodes that require φ-functions for v

CS553 Lecture Control-Flow, Dominators, Loop Detection, and SSA 28

5

Dominance Tree Example

2

3 6 7

8

9

11 10

The dominance tree shows the dominance relation

5

4

13

12

CFG

1

2 5 9

11 10 7 8 6 3

4 13 12

Dominance Tree

1

CS553 Lecture Control-Flow, Dominators, Loop Detection, and SSA 29

Inserting Phi Nodes

  Calculate the dominator tree
–  a lot of research has gone into calculating this

quickly

  Computing dominance frontier from dominator tree
–  DFlocal[n]= successors of n (in CFG) that are not

strictly dominated by n
–  DFup[n]= nodes in the dominance frontier of n that

are not strictly dominated by n�s immediate
dominator

–  DF[n] = DFlocal[n] ∪ ∪ DFup[c]
c ∈ children[n]

CS553 Lecture Control-Flow, Dominators, Loop Detection, and SSA 30

Algorithm for Inserting φ-Functions

for each variable v
 WorkList ← ∅
 EverOnWorkList ← ∅
 AlreadyHasPhiFunc ← ∅
 for each node n containing an assignment to v
 WorkList ← WorkList ∪ {n}
 EverOnWorkList ← WorkList
 while WorkList ≠ ∅
 Remove some node n for WorkList
 for each d ∈ DF(n)
 if d ∉ AlreadyHasPhiFunc
 Insert a φ-function for v at d
 AlreadyHasPhiFunc ← AlreadyHasPhiFunc ∪ {d}
 if d ∉ EverOnWorkList
 WorkList ← WorkList ∪ {d}
 EverOnWorkList ← EverOnWorkList ∪ {d}

Put all defs of v on the worklist

Insert at most one φ function per node

Process each node at most once

CS553 Lecture Control-Flow, Dominators, Loop Detection, and SSA 31

Transformation to SSA Form

  Two steps
–  Insert φ-functions
–  Rename variables

CS553 Lecture Control-Flow, Dominators, Loop Detection, and SSA 32

Variable Renaming

  Basic idea
–  When we see a variable on the LHS, create a new name for it
–  When we see a variable on the RHS, use appropriate subscript

x =
 = x
x =
 = x

x0 =
 = x0
x1 =
 = x1

  Easy for straightline code

  Use a stack when there�s control flow
–  For each use of x, find the definition of x that dominates it

x0 = x =

 = x = x0

Traverse the dominance tree

CS553 Lecture Control-Flow, Dominators, Loop Detection, and SSA 33

Variable Renaming (cont)

  Data Structures
–  Stacks[v] ∀v

Holds the subscript of most recent definition of variable v, initially empty
–  Counters[v] ∀v

Holds the current number of assignments to variable v; initially 0

  Auxiliary Routine
procedure GenName(variable v)

   i := Counters[v]
   push i onto Stacks[v]
   Counters[v] := i + 1

1

2 5 9

11 10 7 8 6 3

4 13 12

Use the Dominance Tree to remember the most
recent definition of each variable

CS553 Lecture Control-Flow, Dominators, Loop Detection, and SSA 34

Variable Renaming Algorithm

procedure Rename(block b)
 if b previously visited return

 for each statement s in b (in order)
 for each variable v ∈ RHS(s) (except for φ-functions)
 replace v by vi, where i = Top(Stacks[v])
 for each variable v ∈ LHS(s)
 GenName(v) and replace v with vi, where i=Top(Stack[v])
 for each s ∈ succ(b) (in CFG)
 j ← position in s�s φ-function corresponding to block b
 for each φ-function p in s
 replace the jth operand of RHS(p) by vi, where i = Top(Stack[v])

 for each s ∈ child(b) (in DT)
 Rename(s)
 for each φ-function or statement t in b
 for each vi ∈ LHS(t)
 Pop(Stack[v])

Call Rename(entry-node)

Recurse using Depth First Search

Unwind stack when done with this node

Φ(, ,)

CS553 Lecture Control-Flow, Dominators, Loop Detection, and SSA 35

Transformation from SSA Form

  Proposal
–  Restore original variable names (i.e., drop subscripts)
–  Delete all φ-functions

  Alternative
� Perform dead code elimination (to prune φ-functions)
� Replace φ-functions with copies in predecessors
� Rely on register allocation coalescing to remove unnecessary copies

x0 =
x1 =
 = x0
 = x1

  Complications (the proposal doesn�t
work!)
� What if versions get out of order?

(simultaneously live ranges)

PA2 and Dominators

  Why might you be getting ‘Instruction does not dominate all uses!’ error?

CS553 Lecture Control-Flow, Dominators, Loop Detection, and SSA 36

CS553 Lecture Control-Flow, Dominators, Loop Detection, and SSA 37

Next Time

  Reading
–  Advanced Compiler Optimizations for Supercomputers by Padua and

Wolfe

  Lecture
–  Dependencies in loops
–  Parallelization and Performance Optimization of Applications

