An Overview of GCC Architecture (source: wikipedia)

Middle End

Front End |

opt

H pass 1
|] / ;
I .

C++ AST Generic 11 GIMPLE SSA .
/ \ / o
AST opt :
|

CS553 Lecture Control-Flow, Dominators, Loop Detection, and SSA

Control-Flow Analysis and Loop Detection

] machine
code

—— — —

Back End

Last time
— Lattice-theoretic framework for data-flow analysis

Today
— Control-flow analysis
— Loops
— Identifying loops using dominators
— Converting to SSA using dominators
— Dominators and PA2

CS553 Lecture Control-Flow, Dominators, Loop Detection, and SSA

—

Context

Data-flow
— Flow of data values from defs to uses
— Could alternatively be represented as a data dependence

Control-flow
— Sequencing of operations

— Could alternatively be represented as a control dependence
— e.g., Evaluation of then-code and else-code depends on if-test

CS553 Lecture Control-Flow, Dominators, Loop Detection, and SSA

Why study control flow analysis?

Finding Loops
— most computation time is spent in loops
— to optimize them, we need to find them

Loop Optimizations
— Loop-invariant code hoisting
— Induction variable elimination
— Array bounds check removal
— Loop unrolling
— Parallelization

Identifying structured control flow
— can be used to speed up data-flow analysis

CS553 Lecture Control-Flow, Dominators, Loop Detection, and SSA

Representing Control-Flow

High-level representation
— Control flow is implicit in an AST

Low-level representation:
— Use a Control-flow graph
— Nodes represent statements
— Edges represent explicit flow of control

Other options
— Control dependences in program dependence graph (PDG) [Ferrante87]
— Dependences on explicit state in value dependence graph (VDG) [Weise 94]

CS553 Lecture Control-Flow, Dominators, Loop Detection, and SSA 5

What Is Control-Flow Analysis?

Control-flow analysis discovers the flow of control within a procedure
(e.g., builds a CFG, identifies loops)

lla := 0
Example b :=a *b
1 a :=0 !
3le := b/d
2 b :=a*b c < x?
3 Ll: ¢ :=b/d \
4 if ¢ < x goto L2 sle :=b / ¢
5 e :=b /c f :=e+1
6 fi=e+1 /
7 L2: g := £ g := £
8 h :=t-g h:=t-g
9 if e > 0 goto L3 e > 0?
10 goto L1 No Yes
11 L3: return 10| goto | 11| return

CS553 Lecture Control-Flow, Dominators, Loop Detection, and SSA 6

Loop Concepts

Loop: Strongly connected subgraph of CFG with a single entry point (header)

Loop entry edge: Source not in loop & target in loop

Loop exit edge: Source in loop & target not in loop

Loop header node: Target of loop entry edge. Dominates all nodes in loop.
Back edge: Target is loop header & source is in the loop

Natural loop: Associated with each back edge. Nodes dominated by

header and with path to back edge without going through header

Loop tail node: Source of back edge

Loop preheader node: Single node that’ s source of the loop entry edge
Nested loop: Loop whose header is inside another loop
CS553 Lecture Control-Flow, Dominators, Loop Detection, and SSA

Picturing Loop Terminology

N/

preheader

back edge
Jentry edge

head

/

loop

Xxit edge

CS553 Lecture Control-Flow, Dominators, Loop Detection, and SSA

tail

The Value of Preheader Nodes

Not all loops have preheaders
— Sometimes it is useful to create them

Without preheader node
— There can be multiple entry edges

pre-header

With single preheader node

— There is only one entry edge h

Useful when moving code outside the loop -
t

— Don’ t have to replicate code for multiple entry
edges

CS553 Lecture Control-Flow, Dominators, Loop Detection, and SSA 9

Identifying Loops

Why?

— Most execution time spent in loops, so optimizing loops will often give
most benefit

Many approaches
— Interval analysis
— Exploit the natural hierarchical structure of programs
— Decompose the program into nested regions called intervals
— Structural analysis: a generalization of interval analysis

— Identify dominators to discover loops

We' Il focus on the dominator-based approach

CS553 Lecture Control-Flow, Dominators, Loop Detection, and SSA 10

Dominator Terminology

Dominators er;try
d dom i if all paths from entry to node i included .~ >
: d dom i
Strict dominators ®
dsdomiifd domiandd=i entry

Immediate dominators

aidom b if a sdom b and there does not exist a node ¢ aidom b n
suchthatc=a,c=b,adomc, and cdomb

not 3 ¢, a sdom ¢ and ¢ sdom b n

Post dominators
p pdom 1 if every possible path from 1 to exit includes :
p (p dom 1 in the flow graph whose arcs are reversed
n p pdom i
exit

and entry and exit are interchanged)

CS553 Lecture Control-Flow, Dominators, Loop Detection, and SSA 11

Identifying Natural Loops with Dominators

Back edges
A back edge of a natural loop is one whose target
dominates its source

Natural loop

The natural loop of a back edge (m—n), where n
dominates m, is the set of nodes x such that n
dominates x and there is a path from x to m not
containing n

natural
loop

| a |
n The target, c, of the n

edge (d—c) does not

Example

SCC with ¢ and d not n dominate its source, d,
a loop because ha:s h

two entry points C |Z| d | so (d—c) does not n

% define a natural loop

CS553 Lecture Control-Flow, Dominators, Loop Detection, and SSA 12

Computing Dominators

Input:

Set of nodes N (in CFG) and an entry node s

Output: Dom[i] = set of all nodes that dominate node 1

Dom[s] = {s} Key Idea

for eachn EN - {s} If a node dominates all
Dom[n] =N predecessors of node n, then it

repeat also dominates node n

change = false

for eachn €N — {s} p p) p pred[n]
D= {l’l} U (mpEpred(n) Dom[p]) \Y ll 2
if D = Dom|[n] n

change = true
Dom[n]=D
until !change

CS553 Lecture

x € Dom(p,) " x € Dom(p,) * x € Dom(p;) = x € Dom(n)

Control-Flow, Dominators, Loop Detection, and SSA 13

Computing Dominators (example)

Input: Set of nodes N and an entry node s

Output: Dom[i] = set of all nodes that dominate node 1 s}

Dom[s] = {s} {
for eachn €N — {s}
Dom[n] =N
repeat
change = false
for eachn €N — {s}
D = {n} U (Mygpream Dom(p])
if D = Dom|[n]
change = true
Dom[n]=D
until !change

CS553 Lecture

o 5[]

T

/
P [t b s}
' n |inp s
Initially
Dom[s] = {s}
Doml[q] = {n, p, q, 1, s}. . .
Finally

Dom[q] = {q, s}
Dom[r] = {r, s}

Dom[p] = {p, s}
Dom[n] = {n, p, s}

Control-Flow, Dominators, Loop Detection, and SSA 14

Recall SSA, Another use of dominator information

Advantage
— Allow analyses and transformations to be simpler & more efficient/effective

Disadvantage
— May not be “executable” (requires extra translations to and from)

— May be expensive (in terms of time or space)

Process

Original Code (RTL) Optimized Code (RTL)

T 72
SS4 Codel ——— SSA Code2 ——— SS4 Code3

CS553 Lecture Control-Flow, Dominators, Loop Detection, and SSA 15

Static Single Assignment (SSA) Form

Idea
— Each variable has only one static definition
— Makes it easier to reason about values instead of variables

— Similar to the notion of functional programming

Transformation to SSA
— Rename each definition

— Rename all uses reached by that assignment

Example
v o= oL, vV, = ...
= v = VO
v = _— |
I A e IS L. vy

What do we do when there’s control flow?

CS553 Lecture Control-Flow, Dominators, Loop Detection, and SSA 16

SSA and Control Flow

Problem
— A use may be reached by several definitions

2 \|\v

2 |vy =L, 3|vy; =
4 .v?

CS553 Lecture Control-Flow, Dominators, Loop Detection, and SSA

SSA and Control Flow (cont)

Merging Definitions
— ¢-functions merge multiple reaching definitions

Example

ZVO

CS553 Lecture Control-Flow, Dominators, Loop Detection, and SSA

Another Example

2|v = vtl S| V1 = 9V, V)
| | v, := v;+1
CS553 Lecture Control-Flow, Dominators, Loop Detection, and SSA

Transformation to SSA Form

|

_

Two steps
— Insert ¢-functions
— Rename variables

CS553 Lecture Control-Flow, Dominators, Loop Detection, and SSA

20

Where Do We Place ¢-Functions?

Basic Rule

— If two distinct (non-null) paths x—z and y—z converge at node z, and

nodes x and y contain definitions of variable v, then a
¢-function for v is inserted at z

XV =L, Y vy, =...
2| Vs = 9(Vy, V)
- Vg .
CS553 Lecture Control-Flow, Dominators, Loop Detection, and SSA

Machinery for Placing ¢-Functions

Recall Dominators
— d dom i if all paths from entry to node i include d
— dsdomiifd domiand d=i

Dominance Frontiers

entry

P

ddomi
i

— The dominance frontier of a node d is the set of nodes that are “just

barely” not dominated by d; i.e., the set of nodes n, such that

— d dominates a predecessor p of n, and
— d does not strictly dominate n
— DF(d) = {n | 3p&Epred(n), d dom p and d !sdom n}

Notational Convenience
~ DF(S) = U, s DF(n)

CS553 Lecture Control-Flow, Dominators, Loop Detection, and SSA

N
[\

Dominance Frontier Example

DF(d) = {n | Ip&pred(n), d dom p and d !sdom n}

Dom(5) = {5, 6,7, 8} Nodes in Dom(5)

DFE(5) = (4,5, 12,13

What's significant about the Dominance Frontier?

In SS4 form, definitions must dominate uses
CS553 Lecture Control-Flow, Dominators, Loop Detection, and SSA

Dominance Frontier Example I1

DF(d) = {n | Ip&pred(n), d dom p and d !sdom n}

Dom(5) = {5, 6,7, 8} 0 Nodes in Dom(5)

DF(5) = {4, 5 13}

®
\ o

In this graph, node 4 is the first point of convergence between the entry

and node 5, so do we need a ¢- function at node 13?

CS553 Lecture Control-Flow, Dominators, Loop Detection, and SSA

SSA Exercise

1

/\

2 |vg:i=... 7
4 §|vy = ... 9| voi= ...
5 10 vy:=¢(vy,V),)
—_—
6 V5:=¢ (V3/V4)

DF(8) = {10}
DF(9) = {10}
DF(2) = {6} DF(d) = {n| dpSpred(n), d dom p and d !sdom n}
DF({8,9}) = {10}
DF(10) = {6}

DF({2,8,9,6,10}) ={6,10}

See http://www.hipersofi.rice.edu/grads/publications/dom14.pdf for a more thorough description of DF.

CS553 Lecture

Control-Flow, Dominators, Loop Detection, and SSA 25

Dominance Frontiers Revisited

Suppose that node 3 defines variable x

DF@3) = {5/

x € Def(3)

Do we need to insert a ¢- function for x anywhere else?

Yes. At node 6. Why?

CS553 Lecture

Control-Flow, Dominators, Loop Detection, and SSA 26

Dominance Frontiers and SSA

Let
— DF,(S) =DF(S)
~ DF,,(S) = DF(S U DE{(S))

Iterated Dominance Frontier

Theorem

— If S is the set of CFG nodes that define variable v, then DF_(S) is the set
of nodes that require ¢-functions for v

CS553 Lecture Control-Flow, Dominators, Loop Detection, and SSA 27

Dominance Tree Example

The dominance tree shows the dominance relation

Dominance Tree

CS553 Lecture Control-Flow, Dominators, Loop Detection, and SSA 28

Inserting Phi Nodes

Calculate the dominator tree si:a=3
— a lot of research has gone into calculating this 7
quickly
s2:b=a+2
Computing dominance frontier from dominator tree :
— DF,,,[n]= successors of n (in CFG) that are not 23 ¢ = freadd)
strictly dominated by n 7
— DF,,[n]=nodes in the dominance frontier of n that I
are not strictly dominated by n” s immediate .
dominator
s5:if (c>a)
— DF[n] = DF,[nju U DF,[c]
¢ Echildren[n] v
s6:c=c+1
s7:r=a+b
CS553 Lecture Control-Flow, Dominators, Loop Detection, and SSA

Algorithm for Inserting ¢-Functions

for each variable v
WorkList < &
EverOnWorkList <= &
AlreadyHasPhiFunc < &
for each node n containing an assignment to v Put all defs of v on the worklist
WorkList <= WorkList U {n}
EverOnWorkList < WorkList
while WorkList = &
Remove some node n for WorkList
for each d € DF(n)
if d & AlreadyHasPhiFunc Insert at most one ¢ function per node
Insert a ¢-function for v at d
AlreadyHasPhiFunc < AlreadyHasPhiFunc U {d}
if d & EverOnWorkList Process each node at most once
WorkList <= WorkList U {d}
EverOnWorkList < EverOnWorkList U {d}

CS553 Lecture Control-Flow, Dominators, Loop Detection, and SSA 30

Transformation to SSA Form

Two steps
— Insert ¢-functions
— Rename variables

CS553 Lecture Control-Flow, Dominators, Loop Detection, and SSA 31

Variable Renaming

Basic idea

— When we see a variable on the LHS, create a new name for it
— When we see a variable on the RHS, use appropriate subscript

Easy for straightline code

x= X, =

X = x; =

Use a stack when there’s control flow

— For each use of x, find the definition of x that dominates it

X = Xo = Traverse the dominance tree
N N

=X =X,

CS553 Lecture Control-Flow, Dominators, Loop Detection, and SSA 32

Variable Renaming (cont)

Data Structures
— Stacks[v] Vv
Holds the subscript of most recent definition of variable v, initially empty

— Counters[v] Vv
Holds the current number of assignments to variable v; initially 0

Auxiliary Routine
procedure GenName(variable v)
1 := Counters|[v]
push i1 onto Stacks[v]

Counters[v] :=1 + 1

Use the Dominance Tree to remember the most
recent definition of each variable

CS553 Lecture Control-Flow, Dominators, Loop Detection, and SSA 33

Variable Renaming Algorithm

procedure Rename(block b)
if b previously visited return Call Rename(entry-node)

for each statement s in b (in order)
for each variable v € RHS(s) (except for ¢-functions)
replace v by v;, where i = Top(Stacks[v])
for each variable v € LHS(s)
GenName(v) and replace v with v,, where i=Top(Stack[v])
for each s € succ(b) (in CFG)
j < position in s’ s ¢-function corresponding to block b
for each ¢-function p in s
replace the j" operand of RHS(p) by v;, where i = Top(Stack[v])

o(, .0
for each s € child(b) (in DT) } Recurse using Depth First Search
Rename(s)
for each ¢-function or statement t in b . _ .
for each v, € LHS(t) } Unwind stack when done with this node
Pop(Stack[v])

CS553 Lecture Control-Flow, Dominators, Loop Detection, and SSA 34

Transformation from SSA Form

Proposal

— Restore original variable names (i.e., drop subscripts)
— Delete all ¢-functions

Complications (the proposal doesn’t
work!) X0 =
— What if versions get out of order?

. ; = x
(simultaneously live ranges) 0

Alternative

— Perform dead code elimination (to prune ¢-functions)
—Replace ¢-functions with copies in predecessors

—Rely on register allocation coalescing to remove unnecessary copies

CS553 Lecture Control-Flow, Dominators, Loop Detection, and SSA

w
W

PA2 and Dominators

Why might you be getting ‘Instruction does not dominate all uses!’ error?

CS553 Lecture Control-Flow, Dominators, Loop Detection, and SSA 36

Next Time

Reading

— Advanced Compiler Optimizations for Supercomputers by Padua and
Wolfe

Lecture

— Dependencies in loops
— Parallelization and Performance Optimization of Applications

CS553 Lecture Control-Flow, Dominators, Loop Detection, and SSA

