
An Overview of GCC Architecture (source: wikipedia) 
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Control-Flow Analysis and Loop Detection 

  Last time 
–  Lattice-theoretic framework for data-flow analysis 

  Today 
–  Control-flow analysis 
–  Loops 
–  Identifying loops using dominators 
–  Converting to SSA using dominators 
–  Dominators and PA2 
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Context 

  Data-flow 
–  Flow of data values from defs to uses 
–  Could alternatively be represented as a data dependence 

  Control-flow 
–  Sequencing of operations 
–  Could alternatively be represented as a control dependence 
–  e.g., Evaluation of then-code and else-code depends on if-test  
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Why study control flow analysis? 

  Finding Loops 
–  most computation time is spent in loops 
–  to optimize them, we need to find them 

  Loop Optimizations 
–  Loop-invariant code hoisting 
–  Induction variable elimination 
–  Array bounds check removal 
–  Loop unrolling 
–  Parallelization 
–  ... 

  Identifying structured control flow 
–  can be used to speed up data-flow analysis 
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Representing Control-Flow 

  High-level representation 
–  Control flow is implicit in an AST 

  Low-level representation:   
–  Use a Control-flow graph 

–  Nodes represent statements 
–  Edges represent explicit flow of control 

  Other options 
–  Control dependences in program dependence graph (PDG) [Ferrante87] 
–  Dependences on explicit state in value dependence graph (VDG) [Weise 94] 
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What Is Control-Flow Analysis? 

  Control-flow analysis discovers the flow of control within a procedure 
(e.g., builds a CFG, identifies loops) 

  Example 

  1   a := 0 
  2   b := a * b 
  3  L1:  c := b/d 
  4   if c < x goto L2 
  5   e := b / c 
  6   f := e + 1 
  7  L2:  g := f 
  8   h := t - g 
  9   if e > 0 goto L3 
  10 goto L1 
  11 L3:  return 

Yes No 

1 a := 0 
b := a * b 

3 c := b/d 
c < x? 

5 e := b / c 
f := e + 1 

7 g := f 
h := t - g 
e > 0? 

10 goto 11 return 
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Loop Concepts 

  Loop:  Strongly connected subgraph of CFG with a single entry point (header) 

  Loop entry edge:  Source not in loop & target in loop 

  Loop exit edge:   Source in loop & target not in loop 

  Loop header node:  Target of loop entry edge. Dominates all nodes in loop. 

  Back edge:   Target is loop header & source is in the loop 

  Natural loop:   Associated with each back edge.  Nodes dominated by 

header and with path to back edge without going through header 

  Loop tail node:   Source of back edge 

  Loop preheader node:  Single node that�s source of the loop entry edge 

  Nested loop:   Loop whose  header is inside another loop 
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entry edge 

Picturing Loop Terminology 

preheader 

exit edge 

loop 

back edge 

tail 

head 
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h 

t 

pre-header p 

The Value of Preheader Nodes 

    

  Not all loops have preheaders 
–  Sometimes it is useful to create them 

  Without preheader node 
–  There can be multiple entry edges 

  With single preheader node 
–  There is only one entry edge 

  Useful when moving code outside the loop 
–  Don�t have to replicate code for multiple entry 

edges 

h 

t 
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Identifying Loops 

  Why? 
–  Most execution time spent in loops, so optimizing loops will often give 

most benefit 

  Many approaches 
–  Interval analysis 

–  Exploit the natural hierarchical structure of programs 
–  Decompose the program into nested regions called intervals 

–  Structural analysis: a generalization of interval analysis 
–  Identify dominators to discover loops 

  We�ll focus on the dominator-based approach 



CS553 Lecture Control-Flow, Dominators, Loop Detection, and SSA 11 

Dominators 
 d dom i if all paths from entry to node i include d 

 
Strict dominators 
   d sdom i if d dom i and d ≠ i 

Immediate dominators 
   a idom b if a sdom b and there does not exist a node c 

such that c ≠ a, c ≠ b, a dom c, and c dom b 
 
Post dominators 
   p pdom i if every possible path from i to exit includes 

p (p dom i in the flow graph whose arcs are reversed 
and entry and exit are interchanged) 

d 

i 

entry 

d dom i 

p 

i 

exit 

p pdom i 

Dominator Terminology 

a 

b 

entry 

a idom b 

not ∃ c, a sdom c and c sdom b 
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Back edges 
A back edge of a natural loop is one whose target 
dominates its source 

Natural loop 
 The natural loop of a back edge (m→n), where n 
dominates m, is the set of nodes x such that n 
dominates x and there is a path from x to m not 
containing n 

t 

s 
back edge 

n 

m 

natural  
loop 

b 

c 

a 

d 

e 

b 

a 

c 

d 

e 

The target, c, of the 
edge (d→c) does  not   
dominate its source, d,  
so (d→c) does not  
define a natural loop 

Example 
 SCC with c and d not 
a loop because has 
two entry points 

Identifying Natural Loops with Dominators 
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Computing Dominators 

Input:    Set of nodes N (in CFG) and an entry node s 
Output: Dom[i] = set of all nodes that dominate node i 
 
Dom[s] = {s}       
for each n  ∈ N – {s}      

 Dom[n] = N        
repeat 

 change = false 
 for each n ∈ N – {s} 
  D = {n} ∪  (∩p∈pred(n) Dom[p]) 
  if D ≠ Dom[n] 
    change = true 
    Dom[n] = D 

until !change 

Key Idea     
 If a node dominates all 
predecessors of node n, then it 
also dominates node n    

n 

pred[n] p1 p2 p3 

  x ∈ Dom(p1) ^ x ∈ Dom(p2) ^ x ∈ Dom(p3)  ⇒ x ∈ Dom(n) 
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{n, p, q, r, s} {n, p, q, r, s} {n, p, q, r, s} 

Computing Dominators (example) 

Input:    Set of nodes N and an entry node s 
Output: Dom[i] = set of all nodes that dominate node i 
  
Dom[s] = {s}      
for each n  ∈ N – {s}       
  Dom[n] = N        
repeat 
  change = false 
  for each n ∈ N – {s} 
   D = {n} ∪  (∩p∈pred(n) Dom[p]) 
   if D ≠ Dom[n] 
     change = true 
     Dom[n] = D 
until !change 

n 

p 

r 

Initially 
  Dom[s] = {s} 
  Dom[q] = {n, p, q, r, s}. . . 
Finally      
  Dom[q] = 
  Dom[r]  = 
  Dom[p] = 
  Dom[n] =   

s 

{n, p, q, r, s} 

 {n, p, q, r, s} 

   {s} 

                   {q, s} 
                 {r, s} 
                   {p, s} 
                   {n, p, s}   

{n, p, q, r, s} q 

{n, p, q, r, s} 

 {n, p, q, r, s} 
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Recall SSA, Another use of dominator information 

  Advantage 
–  Allow analyses and transformations to be simpler & more efficient/effective 

  Disadvantage 
–  May not be �executable� (requires extra translations to and from) 
–  May be expensive (in terms of time or space) 

  Process 

Original Code (RTL) 

SSA Code1 SSA Code2 SSA Code3 

Optimized Code (RTL) 

T1 T2 
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Static Single Assignment (SSA) Form 

  Idea 
–  Each variable has only one static definition 
–  Makes it easier to reason about values instead of variables 
–  Similar to the notion of functional programming 

  Transformation to SSA 
–  Rename each definition 
–  Rename all uses reached by that assignment 

  Example 
  v := ... 
  ... := ... v ... 
  v := ... 
  ... := ... v ... 

  v0 := ... 
  ... := ... v0 ... 
  v1 := ... 
  ... := ... v1 ... 

  What do we do when there�s control flow? 
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SSA and Control Flow 

  Problem 
–  A use may be reached by several definitions 

...v... 4 

v := ... 2 v := ... 3 

1 

...v?... 4 

v0 :=... 2 v1 :=... 3 

1 
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SSA and Control Flow (cont) 

  Merging Definitions 
–  φ-functions merge multiple reaching definitions 

  Example 

v2 := φ(v0,v1) 
...v2... 

4 

v0 :=... 2 v1 :=... 3 

1 
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Another Example 

v := 1 1 

v := v+1 2 

v0 := 1 1 

v1 := φ(v0,v2) 
v2 := v1+1 

2 
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Transformation to SSA Form 

  Two steps 
–  Insert φ-functions 
–  Rename variables 
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Where Do We Place φ-Functions? 

  Basic Rule 
–  If two distinct (non-null) paths x→z and y→z converge at node z, and 

nodes x and y contain definitions of variable v, then a  
φ-function for v is inserted at z 

v3 := φ(v1,v2) 
...v3... 

z 

v1 :=... x v2 :=... y 
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Machinery for Placing φ-Functions 

  Recall Dominators 
–  d dom i if all paths from entry to node i include d 
–  d sdom i if d dom i and d≠i 

  Dominance Frontiers 
–  The dominance frontier of a node d is the set of nodes that are �just 

barely� not dominated by d; i.e., the set of nodes n, such that 
–  d dominates a predecessor p of n, and 
–  d does not strictly dominate n 

–  DF(d) = {n | ∃p∈pred(n), d dom p and d !sdom n} 

  Notational Convenience 
–  DF(S) = ∪n∈S DF(n) 

d 

i 

entry 

d dom i 
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Nodes in Dom(5) 

     {4, 5, 12, 13} 

5 

Dominance Frontier Example 

2 

3 6 7 

8 

9 

11 10 

DF(d) = {n | ∃p∈pred(n), d dom p and d !sdom n} 

Dom(5) =      {5, 6, 7, 8} 

5 

4 

13 

12 

What�s significant about the Dominance Frontier? 

1 

In SSA form, definitions must dominate uses 

DF(5) = 
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Nodes in Dom(5) 

     {4, 5, 13} 

5 

Dominance Frontier Example II 

2 

3 6 7 

8 

DF(d) = {n | ∃p∈pred(n), d dom p and d !sdom n} 

Dom(5) =      {5, 6, 7, 8} 

5 

4 

13 

In this graph, node 4 is the first point of convergence between the entry 
and node 5, so do we need a φ- function at node 13?  

1 
DF(5) = 
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                 {10} 
                 {10} 
                {6} 
                       {10} 
                  {6} 
                             {6,10}  

SSA Exercise 

6 

5 10 

3 4 v := ... 8 v := ... 9 

v :=... 2 7 

1 

DF(8) = 
DF(9) = 
DF(2) = 
DF({8,9}) = 
DF(10) = 
DF({2,8,9,6,10}) =  

DF(d) = {n | ∃p∈pred(n), d dom p and d !sdom n} 

1 2 

3 

v4:=φ(v1,v2) 

v5:=φ(v3,v4) 

See http://www.hipersoft.rice.edu/grads/publications/dom14.pdf for a more thorough description of DF. 
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Do we need to insert a φ- function for x anywhere else? 

Dominance Frontiers Revisited 

Suppose that node 3 defines variable x 

DF(3) =      {5} 

6 

2 3 4 

5 

1 

Yes.  At node 6.  Why? 

x ∈ Def(3) 
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Dominance Frontiers and SSA 

  Let 
–  DF1(S) = DF(S) 
–  DFi+1(S) = DF(S ∪ DFi(S)) 

  Iterated Dominance Frontier 
–  DF∞(S) 

  Theorem 
–  If S is the set of CFG nodes that define variable v, then DF∞(S) is the set 

of nodes that require φ-functions for v 
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5 

Dominance Tree Example 

2 

3 6 7 

8 

9 

11 10 

The dominance tree shows the dominance relation 

5 

4 

13 

12 

CFG 

1 

2 5 9 

11 10 7 8 6 3 

4 13 12 

Dominance Tree 

1 
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Inserting Phi Nodes 

  Calculate the dominator tree 
–  a lot of research has gone into calculating this 

quickly 

  Computing dominance frontier from dominator tree 
–  DFlocal[n]= successors of n (in CFG) that are not 

strictly dominated by n 
–  DFup[n]= nodes in the dominance frontier of n that 

are not strictly dominated by n�s immediate 
dominator 

–  DF[n] = DFlocal[n] ∪  ∪  DFup[c] 
c ∈ children[n] 
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Algorithm for Inserting φ-Functions 

for each variable v 
 WorkList ← ∅ 
 EverOnWorkList ← ∅  
 AlreadyHasPhiFunc ← ∅ 
 for each node n containing an assignment to v 
  WorkList ← WorkList ∪ {n} 
 EverOnWorkList ← WorkList 
 while WorkList ≠ ∅ 
  Remove some node n for WorkList 
  for each d ∈ DF(n) 
   if d ∉ AlreadyHasPhiFunc 
    Insert a φ-function for v at d 
    AlreadyHasPhiFunc ← AlreadyHasPhiFunc ∪ {d} 
    if d ∉ EverOnWorkList 
     WorkList ← WorkList ∪ {d} 
     EverOnWorkList ← EverOnWorkList ∪ {d} 
      

Put all defs of v on the worklist 

Insert at most one φ function per node 

Process each node at most once 
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Transformation to SSA Form 

  Two steps 
–  Insert φ-functions 
–  Rename variables 
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Variable Renaming 

  Basic idea 
–  When we see a variable on the LHS, create a new name for it 
–  When we see a variable on the RHS, use appropriate subscript 

x = 
   = x 
x =  
   = x  

x0 = 
   = x0 
x1 =  
   = x1  

  Easy for straightline code 

  Use a stack when there�s control flow 
–  For each use of x, find the definition of x that dominates it 

x0 = x = 

  = x   = x0 

Traverse the dominance tree 
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Variable Renaming (cont) 

  Data Structures 
–  Stacks[v] ∀v  

Holds the subscript of most recent definition of variable v, initially empty 
–  Counters[v] ∀v 

Holds the current number of assignments to variable v; initially 0 

  Auxiliary Routine 
procedure GenName(variable v) 

    i := Counters[v] 
    push i onto Stacks[v] 
    Counters[v] := i + 1 

1 

2 5 9 

11 10 7 8 6 3 

4 13 12 

Use the Dominance Tree to remember the most 
recent definition of each variable 
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Variable Renaming Algorithm 

procedure Rename(block b) 
 if b previously visited return 
  
 for each statement s in b (in order) 
  for each variable v ∈ RHS(s) (except for φ-functions) 
   replace v by vi, where i = Top(Stacks[v]) 
  for each variable v ∈ LHS(s) 
   GenName(v) and replace v with vi, where i=Top(Stack[v]) 
 for each s ∈ succ(b)    (in CFG) 
  j ← position in s�s φ-function corresponding to block b 
  for each φ-function p in s 
   replace the jth operand of RHS(p) by vi, where i = Top(Stack[v]) 

 
 for each s ∈ child(b)  (in DT) 
  Rename(s) 
 for each φ-function or statement t in b 
  for each vi ∈ LHS(t) 
   Pop(Stack[v]) 

Call Rename(entry-node) 

Recurse using Depth First Search 

Unwind stack when done with this node 

Φ( , ,  ) 
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Transformation from SSA Form 

  Proposal 
–  Restore original variable names (i.e., drop subscripts) 
–  Delete all φ-functions 

  Alternative 
� Perform dead code elimination (to prune φ-functions) 
� Replace φ-functions with copies in predecessors 
� Rely on register allocation coalescing to remove unnecessary copies 

x0 = 
x1 =  
    = x0  
    = x1  

  Complications (the proposal doesn�t 
work!)       
� What if versions get out of order?  

(simultaneously live ranges) 

PA2 and Dominators 

  Why might you be getting ‘Instruction does not dominate all uses!’ error? 
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Next Time 

  Reading 
–  Advanced Compiler Optimizations for Supercomputers by Padua and 

Wolfe 

  Lecture 
–  Dependencies in loops 
–  Parallelization and Performance Optimization of Applications 


