Frequently asked questions from the previous class survey

September 26, 2019

CS555: Distributed Systems [Fall 2019]
Dept. Of Computer Science, Colorado State University

CS 555: DISTRIBUTED SYSTEMS

(MapReduce)

Shrideep Pallickara
Computer Science
Colorado State University

September 26, 2019

CS555: Distributed Systems [Fall 2019]
Dept. Of Computer Science, Colorado State University

L10.

Professor: Shrideep Pallickara

Topics covered in this lecture

- MapReduce

MapReduce: Topics that we will cover

- Why?
- What is it and what it is not?
- The core framework and original Google paper
- Development of simple programs using Hadoop
- The dominant MapReduce implementation

MapReduce

- It’s a framework for processing data residing on a large number of computers
- Very powerful framework
- Excellent for some problems
- Challenging or not applicable in other classes of problems
What is MapReduce?
- More a framework than a tool
- You are required to fit (some folks shoehorn it) your solution into the MapReduce framework
- MapReduce is not a feature, but rather a constraint

What does this constraint mean?
- It makes problem solving easier and harder
- Clear boundaries for what you can and cannot do
- You actually need to consider fewer options than what you are used to
- But solving problems with constraints requires planning and a change in your thinking

But what does this get us?
- Tradeoff of being confined to the MapReduce framework?
 - Ability to process data on a large number of computers
 - But, more importantly, without having to worry about concurrency, scale, fault tolerance, and robustness

A challenge in writing MapReduce programs
- Design
 - Good programmers can produce bad software due to poor design
 - Good programmers can produce bad MapReduce algorithms
 - Only in this case your mistakes will be amplified
 - Your job may be distributed on 100s or 1000s of machines and operating on a Petabyte of data

MapReduce: Origins of the design
- Process crawled data and logs of web requests
- Several computations work on this raw data to compute derived data
 - Inverted indices
 - Representation of graph structure of web documents
 - Pages crawled per host
 - Most frequent queries in a day ...

Most computations are conceptually straightforward
- But data is large
- Computations must be scalable
 - Distributed across thousands of machines
 - To complete in a reasonable amount of time
Complexity of managing distributed computations can ...

- Obscure simplicity of original computation
- Contributing factors:
 1. How to parallelize computation
 2. Distribute the data
 3. Handle failures

MapReduce was developed to cope with this complexity

- Express simple computations
- Hide messy details of
 - Parallelization
 - Data distribution
 - Fault tolerance
 - Load balancing

MapReduce

- Programming model
 - Associated implementation for
 - Processing & Generating large data sets

Programming model

- Computation takes a set of input key/value pairs
- Produces a set of output key/value pairs
- Express the computation as two functions:
 - Map
 - Reduce

Map

- Takes an input pair
- Produces a set of intermediate key/value pairs

MapReduce library

- Groups all intermediate values with the same intermediate key
- Passes them to the Reduce function
Reduce function
- Accepts intermediate key and set of values for that key
- Merge these values together to get smaller set of values

Counting number occurrences of each word in a large collection of documents

```java
map (String key, String value)
//key: document name
//value: document contents
for each word w in value
    EmitIntermediate(w, "1")
```

Counting number occurrences of each word in a large collection of documents

```java
reduce (String key, Iterator values)
//key: a word
//value: a list of counts
int result = 0;
for each v in values
    result += parseInt(v);
    Emit(AsString(result));
```

MapReduce specification object contains
- Names of
 - Input
 - Output
- Tuning parameters

Map and reduce functions have associated types drawn from different domains

```java
map(k1, v1) \rightarrow list(k2, v2)
reduce(k2, list(v2)) \rightarrow list(v2)
```

What's passed to-and-from user-defined functions
- Strings
 - User code converts between
 - String
 - Appropriate types
Programs expressed as MapReduce computations:

- **Map**
 - Emit line if it matches specified pattern
- **Reduce**
 - Just copy intermediate data to the output

Term-Vector per Host

- Summarizes important terms that occur in a set of documents \(<\text{word}, \text{frequency}>\)
- **Map**
 - Emit \(<\text{hostname}, \text{term vector}>\)
 - For each input document
- **Reduce function**
 - Has all per-document vectors for a given host
 - Add term vectors; discard away infrequent terms
 - \(<\text{hostname}, \text{term vector}>\)

Implementation

- Machines are **commodity** machines
- **GFS** is used to manage the data stored on the disks

Execution Overview – Part I

- **Maps** distributed across multiple machines
- Automatic partitioning of data into \(M\) splits
- Splits processed **concurrently** on different machines
Execution Overview

Execution Overview: Step I
The MapReduce library

- Splits input files into M pieces
 - 16-64 MB per piece
- Starts up copies of the program on a cluster of machines

Execution Overview: Step II
Program copies

- One of the copies is a Master
- There are M map tasks and R reduce tasks to assign
- Master
 - Picks idle workers
 - Assigns each worker a map or reduce task

Execution Overview: Step III
Workers that are assigned a map task

- Read contents of their input split
- Parses <key, value> pairs out of input data
- Pass each pair to user-defined Map function
- Intermediate <key, value> pairs from Maps
 - Buffered in Memory

Execution Overview: Step IV
Writing to disk

- Periodically, buffered pairs are written to disk
- These writes are partitioned
 - By the partitioning function
- Locations of buffered pairs on local disk
 - Reported to back to Master
 - Master forwards these locations to reduce workers

Execution Overview: Step V
Reading Intermediate data

- Master notifies Reduce worker about locations
- Reduce worker reads buffered data from the local disks of Maps
- Read all Intermediate data; sort by intermediate key
 - All occurrences of same key grouped together
 - Many different keys map to the same Reduce task
Execution Overview: Step VI
Processing data at the Reduce worker
- Iterate over sorted intermediate data
- For each unique key pass
 - Key + set of intermediate values to Reduce function
- Output of Reduce function is appended
 - To output file of reduce partition

Execution Overview: Step VII
Waking up the user
- After all Map & Reduce tasks have been completed
- Control returns to the user code

Task Granularity
- Subdivide map phase into M pieces
- Subdivide reduce phase into R pieces
- M, R >> number of worker machines
- Each worker performing many different tasks
 - Improves dynamic load balancing
 - Speeds up recovery during failures

Master Data Structures
- For each Map and Reduce task
 - State: (idle, in-progress, completed)
 - Worker machine identity
- For each completed Map task store
 - Location and sizes of R intermediate file regions
 - Information pushed incrementally to in-progress Reduce tasks

Practical bounds on how large M and R can be
- Master must make $O(M + R)$ scheduling decisions
- Keep $O(MR)$ state in memory
The contents of this slide-set are based on the following references:

1. Jeffrey Dean and Sanjay Ghemawat: MapReduce: Simplified Data Processing on Large Clusters. OSDI 2004: 137-150