CS555: Distributed Systems [SPARK]

Shrideep Pallickara
Computer Science
Colorado State University

October 3, 2019

Frequently asked questions from the previous class survey

- Custom Partitioners
 - How often, example?
 - How does Hadoop decide whether or not to call the combiner?

October 3, 2019

Topics covered in this lecture

- Spark
 - Software stack
 - Interactive shells in Spark
 - Core Spark concepts

October 3, 2019

Spark: What is it?

- Cluster computing platform
 - Designed to be fast and general purpose
- Speed
 - Often considered to be a design alternative for Apache MapReduce
 - Extends MapReduce to support more types of computations
 - Interactive queries, iterative tasks, and stream processing
- Why is speed important?
 - Difference between waiting for hours versus exploring data interactively

October 3, 2019

Spark: Influences and Innovations

- Spark has inherited parts of its APIs, design, and supported formats from other existing computational frameworks
 - Particularly DryadLINQ
- Spark’s internals, especially how it handles failures, differ from many traditional systems
- Spark’s ability to leverage lazy evaluation within memory computations makes it particularly unique

October 3, 2019

Apache Spark
Where does Spark fit in the Analytics Ecosystem?

- Spark provides methods to process data in parallel that are generalizable.
- On its own, Spark is not a data storage solution.
- Spark is used in tandem with:
 - A distributed storage system (e.g., HDFS, Cassandra, or S3)
 - A cluster manager to orchestrate the distribution of Spark applications across the cluster.

Key enabling idea in Spark

- Memory-resident data
- Spark loads data into the memory of worker nodes.
- Processing is performed on memory-resident data.

A look at the memory hierarchy

<table>
<thead>
<tr>
<th>Item</th>
<th>Time (ns)</th>
<th>Human time (seconds)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Processor cycle</td>
<td>0.5 (2 GHz)</td>
<td>1 microsecond</td>
</tr>
<tr>
<td>Cache access</td>
<td>1 (1 GHz)</td>
<td>2 milliseconds</td>
</tr>
<tr>
<td>Memory access</td>
<td>78 (1 GHz)</td>
<td>1.6 seconds</td>
</tr>
<tr>
<td>Context switch</td>
<td>5,000 (1 GHz)</td>
<td>1.67 minutes</td>
</tr>
<tr>
<td>Disk access</td>
<td>7,000,000 (17 ms)</td>
<td>140 seconds</td>
</tr>
<tr>
<td>Quantum</td>
<td>100,000,000,000 (100 ms)</td>
<td>167 minutes</td>
</tr>
</tbody>
</table>

Spark covers a wide range of workloads

- Batch applications
- Iterative algorithms
- Queries
- Stream processing
- This has previously required multiple, independent tools.

Running Spark

- You can use Spark from Python, Java, Scala, R, or SQL.
- Spark itself is written in Scala, and runs on the Java Virtual Machine (JVM).
- You can Spark either on your laptop or a cluster, all you need is an installation of Java.
- If you want to use the Python API, you will also need a Python interpreter (version 2.7 or later)
- If you want to use R, you will need a version of R on your machine.

Spark integrates well with other tools

- Can run in Hadoop clusters
- Access Hadoop data sources, including Cassandra
At its core, Spark is a computational engine

- Spark is responsible for several aspects of applications that comprise
 1. Many tasks across many machines (compute clusters)

- Responsibilities include:
 1. Scheduling
 2. Distributions
 3. Monitoring

Spark applications

- Spark Applications consist of
 1. A driver process
 - The driver process is absolutely essential
 - The heart of a Spark Application and maintains all relevant information during the lifetime of the application
 2. A set of executor processes

The Driver

- The driver process runs your main() function, sits on a node in the cluster
- Driver is responsible for three things:
 1. Maintaining information about the Spark Application
 2. Responding to a user’s program or input
 3. Analyzing, distributing, and scheduling work across the executors

The executors

- The executors are responsible for actually carrying out the work that the driver assigns them
- Each executor is responsible for only two things:
 1. Executing code assigned to it by the driver, and
 2. Reporting the state of the computation on that executor back to the driver node

Architecture of a Spark Application

- The cluster of machines that Spark will use to execute tasks is managed by a cluster manager
- Spark’s standalone cluster manager, YARN, or Mesos
- We submit Spark Applications to these cluster managers, which will grant resources to the application to complete the work
How Spark runs Python or R

- You write Python and R code that Spark translates into code that it then can run on the executor JVM.

SparkSession

- We need a way to send user commands and data to a Spark Application.
- We do that by first creating a SparkSession.
- The SparkSession instance is the way Spark executes user-defined manipulations across the cluster.
- There is a one-to-one correspondence between a SparkSession and a Spark Application.
- In Scala and Python, the variable is available as spark when you start the console.

Partitions

- To allow every executor to perform work in parallel, Spark breaks up the data into chunks called partitions.
- For e.g., a partition may be a collection of rows that sit on one physical machine in your cluster.
- If you have one partition, Spark will have a parallelism of only one, even if you have thousands of executors.
- If you have many partitions but only one executor?
- Spark will still have a parallelism of only one because there is only one computation resource.

Manipulation of Partitions

- An important thing to note is that you do not (for the most part) manipulate partitions manually or individually.
- You simply specify high-level transformations of data in the physical partitions.
- Spark determines how this work will actually execute on the cluster.

Transformations

- In Spark, the core data structures are immutable.
 - They cannot be changed after they’re created.
- If you cannot change it, how are you supposed to use it?
 - You need to instruct Spark how you would like to modify it.
 - These instructions are called transformations.

More about transformations

- Transformations do not return an output.
 - Spark will not act on transformations until we call an action.
Lazy evaluation

- Spark will **wait until the very last moment** to execute the graph of computation instructions.
- When you express some operation:
 - You do not modify the data immediately.
 - Rather, you build up a **plan** of transformations that you would like to apply to your source data.

Why lazy evaluation works ...

- By waiting until the last minute to execute the code:
 - Spark compiles this plan from your transformations to a streamlined physical plan that will run as efficiently as possible across the cluster.
 - This provides immense benefits because Spark can optimize the entire data flow from end to end.
 - E.g. predicate pushdowns.

Spark in a nutshell

- Spark is a distributed programming model in which the user specifies transformations:
 - Multiple transformations build up a directed acyclic graph of instructions.
 - An action begins the process of executing that graph of instructions:
 - As a single job.
 - By breaking it down into stages and tasks to execute across the cluster.

Spark APIs

- Spark has two fundamental sets of APIs:
 - The low-level "unstructured" APIs, and
 - The higher-level structured APIs.

Structured APIs

- Structured APIs are a tool for manipulating all sorts of data:
 - From unstructured log files to semi-structured CSV files and highly structured Parquet files.
 - Refers to three core types of distributed collection APIs:
 - Datasets
 - DataFrames
 - SQL tables and views.
 - Majority of the Structured APIs apply to both batch and streaming computation.

Spark’s Toolset
Spark has two notions of structured collections: DataFrames and Datasets

- DataFrames and Datasets are (distributed) table-like collections with well-defined rows and columns.
- Each column:
 - Must have the same number of rows as all the other columns (although you can use null to specify the absence of a value)
 - Has type information that must be consistent for every row in the collection.

DataFrames versus Datasets

- DataFrames are considered "untyped"
- Datasets are considered "typed"

How does Spark view DataFrames and Datasets?

- To Spark, DataFrames and Datasets represent immutable, lazily evaluated plans that specify what operations to apply to data residing at a location to generate some output.
- When we perform an action on a DataFrame, we instruct Spark to perform the actual transformations and return the result.
- These represent plans of how to manipulate rows and columns to compute the user's desired result.

The DataFrame is the most common Structured API

- Simply represents a table of data with rows and columns.
- The list that defines the columns and the types within those columns is called the schema.

The DataFrame concept is not unique to Spark

- R and Python both have similar concepts.
 - However, Python/R DataFrames (with some exceptions) exist on one machine rather than multiple machines.
 - This limits what you can do with a given DataFrame to the resources that exist on that specific machine.
- A Spark DataFrame can span thousands of computers.

THE SPARK SOFTWARE STACK
The Spark stack

- Spark SQL (semi-)structured data
- Spark Streaming real-time
- MLlib & ML machine learning
- GraphX Graph processing

Spark Core

- Basic functionality of Spark
 - Task scheduling, memory management, fault recovery, and interacting with storage systems
 - Also, the API that defines Resilient Distributed Datasets (RDDs)
 - Spark's core programming abstraction
 - Represents collection of data items dispersed across many compute nodes
 - Can be manipulated concurrently (parallel)

Spark SQL

- Package for working with structured data
- Allows querying data using SQL and HQL (Hive Query Language)
 - Data sources: Hive tables, Parquet, and JSON
- Allows intermixing queries with programmatic data manipulations support by RDDs
 - Using Scala, Java, and Python

Semi-structured data and Spark SQL

- Spark SQL defines an interface for a semi-structured data type, called DataFrames
- And as of Spark 1.6, a semi-structured, typed version of RDDs called Datasets
- Spark SQL is a very important component for Spark performance
- Much of what can be accomplished with Spark Core can be done by leveraging Spark SQL.

Spark Streaming

- Enables processing of live streams of data from sources such as:
 - Logfiles generated by production webservers
 - Messages containing web service status updates
- Uses the scheduling of the Spark Core for streaming analytics on minibatches of data
- Has a number of unique considerations, such as the window sizes used for batches

MLlib

- MLlib is a package of machine learning and statistics algorithms written with Spark
- Algorithms include:
 - Clustering, classification, regression, clustering, and collaborative filtering
 - Low-level primitives
 - Generic gradient descent optimization algorithm
- Alternatives?
 - Mahout, sci-kit learn, VW, WEKA, and R among others
What about Spark ML?
- Still in the early stages, and has only existed since Spark 1.2
- Spark ML provides a higher-level API than MLlib
 - Goal is to allow users to more easily create practical machine learning pipelines
 - Spark MLlib is primarily built on top of RDDs and uses functions from Spark Core, while ML is built on top of Spark SQL DataFrames
- Eventually the Spark community plans to move over to ML and deprecate MLlib

Graph X
- Library for manipulating graphs
- Graph-parallel computations
- Extends Spark RDD API
 - Create a directed graph, with arbitrary properties attached to each vertex and edge

Cluster Managers
- Spark runs over a variety of cluster managers
- These include:
 - Hadoop YARN
 - Apache Mesos
 - Standalone Scheduler
 - Included within Spark

Storage Layers for Spark
- Spark can create distributed datasets from any file stored in HDFS
- Plus, other storage systems supported by the Hadoop API
 - Amazon S3, Cassandra, Hive, HBase, etc.

Spark Shells
- Interactive (Python and Scala)
 - Similar to shells like Bash or Windows command prompt
 - Ad hoc data analysis
- Traditional shells manipulate data using disk and memory on a single machine
 - Spark shells allow interaction with data that is distributed across many machines
 - Spark manages complexity of distributing processing
Several software were designed to run on the Java Virtual Machine

- Languages that compile to run on the JVM and can interact with Java software packages but are not actually Java
- There are a number of non-Java JVM languages
 - The two most popular ones used in real-time application development: Scala and Clojure

Scala

- Has spent most of its life as an academic language
- Still largely developed at universities
- Has a rich standard library that has made it appealing to developers of high-performance server applications
- Like Java, Scala is a strongly typed object-oriented language
- Includes many features from functional programming languages that are not in standard Java
- Interestingly, Java 8 incorporates several of the more useful features of Scala and other functional languages.

What is functional programming?

- When a method is compiled by Java, it is converted to instructions called bytecode and …
- Then largely disappears from the Java environment
- Except when it is called by other methods
- In a functional language, functions are treated the same way as data
- Can be stored in objects similar to integers or strings, returned from functions, and passed to other functions

What about Clojure?

- Based on Lisp
- Javascript
 - Name was a marketing gimmick
 - Closer to Clojure and Scala than it is to Java

The contents of this slide-set are based on the following references

- Real-Time Analytics: Techniques to Analyze and Visualize Streaming Data. Byron Ellis. Wiley. (Chapter 2)