CS 555: DISTRIBUTED SYSTEMS

[MAPREDUCE]

Shrideep Pallickara
Computer Science
Colorado State University

Frequently asked questions from the previous class survey
Topics covered in this lecture

- MapReduce
MapReduce: Topics that we will cover

- Why?
- What it is and what it is not?
- The core framework and original Google paper
- Development of simple programs using Hadoop
 - The dominant MapReduce implementation

MapReduce

- It's a **framework** for processing data residing on a large number of computers
- Very powerful framework
 - Excellent for some problems
 - Challenging or not applicable in other classes of problems
What is MapReduce?

- More a framework than a tool
- You are required to fit (some folks shoehorn it) your solution into the MapReduce framework
- MapReduce is not a feature, but rather a constraint

What does this constraint mean?

- It makes problem solving easier and harder
- Clear boundaries for what you can and cannot do
 - You actually need to consider fewer options than what you are used to
- But solving problems with constraints requires planning and a change in your thinking
But what does this get us?

- Tradeoff of being confined to the MapReduce framework?
 - Ability to process data on a large number of computers
 - But, more importantly, **without having to worry about** concurrency, scale, fault tolerance, and robustness

A challenge in writing MapReduce programs

- **Design!**
 - Good programmers can produce bad software due to poor design
 - Good programmers can produce bad MapReduce algorithms

- Only in this case your **mistakes will be amplified**
 - Your job may be distributed on 100s or 1000s of machines and operating on a Petabyte of data
MapReduce: Origins of the design

- Process crawled data and logs of web requests
- Several computations work on this raw data to compute derived data
 - Inverted indices
 - Representation of graph structure of web documents
 - Pages crawled per host
 - Most frequent queries in a day …

Most computations are conceptually straightforward

- But data is large
- Computations must be **scalable**
 - Distributed across thousands of machines
 - To complete in a reasonable amount of time
Complexity of managing distributed computations can ...

- Obscure \textit{simplicity} of original computation
- Contributing factors:
 1. How to \textit{parallelize} computation
 2. Distribute the \textit{data}
 3. Handle \textit{failures}

MapReduce was developed to cope with this complexity

- Express simple computations
- Hide messy details of
 - Parallelization
 - Data distribution
 - Fault tolerance
 - Load balancing
MapReduce

- Programming model
- Associated implementation for
 - Processing & Generating large data sets

Programming model

- Computation takes a set of **input** key/value pairs
- Produces a set of **output** key/value pairs
- Express the computation as two functions:
 - Map
 - Reduce
Map

- Takes an input pair
- Produces a set of intermediate key/value pairs

MapReduce library

- **Groups** all intermediate values with the same intermediate key
- **Passes** them to the Reduce function
Reduce function

- Accepts intermediate key I and
 - Set of values for that key
- Merge these values together to get
 - Smaller set of values

Counting number occurrences of each word in a large collection of documents

map (String key, String value)
 //key: document name
 //value: document contents

 for each word w in value
 EmitIntermediate(w, "1")
Counting number occurrences of each word in a large collection of documents

\[
\text{reduce (String } \text{key, Iterator values)}
\]

\[
//\text{key: a word}
\]

\[
//\text{value: a list of counts}
\]

\[
\text{int result } = 0;
\]

\[
\text{for each } v \text{ in values}
\]

\[
\text{result } += \text{parseInt}(v);
\]

\[
\text{Emit(AsString(result)));
\]

Sums together all \text{counts} emitted for a particular word

MapReduce specification object contains

- Names of
 - Input
 - Output

- Tuning parameters
Map and reduce functions have associated types drawn from different domains

\[
\text{map}(k_1, v_1) \rightarrow \text{list}(k_2, v_2)
\]

\[
\text{reduce}(k_2, \text{list}(v_2)) \rightarrow \text{list}(v_2)
\]

What’s passed to-and-from user-defined functions

- **Strings**
- User code converts between
 - String
 - Appropriate types
Programs expressed as MapReduce computations:
Distributed Grep

- **Map**
 - Emit line if it matches specified pattern

- **Reduce**
 - Just copy intermediate data to the output

Term-Vector per Host

- Summarizes important terms that occur in a set of documents `<word, frequency>`

- **Map**
 - Emit `<hostname, term vector>`
 - For each input document

- **Reduce function**
 - Has all per-document vectors for a given host
 - Add term vectors; discard away infrequent terms
 - `<hostname, term vector>`
IMPLEMENTATION OF THE RUNTIME

Implementation

- Machines are commodity machines
- GFS is used to manage the data stored on the disks
Execution Overview – Part I

- **Maps** distributed across multiple machines
- Automatic partitioning of data into M splits
- Splits processed **concurrently** on different machines

Execution Overview – Part II

- Partition **intermediate** key space into R pieces
- E.g. $\text{hash(key)} \mod R$
- User specified parameters
 - **Partitioning** function
 - **Number** of partitions (R)
Execution Overview

Execution Overview: Step I
The MapReduce library

- Splits input files into M pieces
 - 16-64 MB per piece
- Starts up copies of the program on a cluster of machines
Execution Overview: Step II
Program copies

- One of the copies is a **Master**
- There are **M** map tasks and **R** reduce tasks to assign
- **Master**
 - Picks *idle* workers
 - Assigns each worker a map or reduce task

Execution Overview: Step III
Workers that are assigned a map task

- Read contents of their input split
- Parses `<key, value>` pairs out of input data
- Pass each pair to user-defined **Map** function
- Intermediate `<key, value>` pairs from **Maps**
 - Buffered in Memory
Execution Overview: Step IV
Writing to disk

- Periodically, buffered pairs are written to disk
- These writes are partitioned
 - By the partitioning function
- Locations of buffered pairs on local disk
 - Reported to back to Master
 - Master forwards these locations to reduce workers

Execution Overview: Step V
Reading Intermediate data

- Master notifies Reduce worker about locations
- Reduce worker reads buffered data from the local disks of Maps
- Read all intermediate data; sort by intermediate key
 - All occurrences of same key grouped together
 - Many different keys map to the same Reduce task
Execution Overview: Step VI
Processing data at the Reduce worker

- Iterate over sorted intermediate data
- For each unique key pass
 - Key + set of intermediate values to Reduce function
- Output of Reduce function is appended
 - To output file of reduce partition

Execution Overview: Step VII
Waking up the user

- After all Map & Reduce tasks have been completed
- Control returns to the user code
Task Granularity

- Subdivide map phase into M pieces
- Subdivide reduce phase into R pieces
- M, R >> number of worker machines
- Each worker performing many different tasks
 - Improves dynamic load balancing
 - Speeds up recovery during failures
Master Data Structures

- For each Map and Reduce task
 - State: \{idle, in-progress, completed\}
 - Worker machine identity

- For each completed Map task store
 - Location and sizes of R intermediate file regions

- Information pushed incrementally to in-progress Reduce tasks

Practical bounds on how large M and R can be

- Master must make $O(M + R)$ scheduling decisions
- Keep $O(MR)$ state in memory
The contents of this slide-set are based on the following references

- Jeffrey Dean and Sanjay Ghemawat: MapReduce: Simplified Data Processing on Large Clusters. OSDI 2004: 137-150