Frequently asked questions from the previous class survey

- Types of tasks MapReduce is poor at
- Difference between Hadoop and Spark
Topics covered in this lecture

- Hadoop
 - Phases of Map
 - Phases of Reduce
 - Examples
Hadoop

- Java-based open-source implementation of MapReduce
- Created by Doug Cutting
- Origins of the name Hadoop
 - Stuffed yellow elephant
- Includes HDFS [Hadoop Distributed File System]

Hadoop: MapReduce Dataflow
In Hadoop a Map task has 4 phases

- Record reader
- Mapper
- Combiner
- Partitioner

Map task phases: **Record Reader**

- **Translates** input splits into records
- Parse data into records, but does not parse the record itself
- Passes the data to the mapper in the form of a key/value pair
 - **key** in this context is *positional information*
 - **value** is the chunk of data that comprises a record
Map task phases: **Map**

- **User-provided code** is executed on each key/value pair from the record reader
- This user-code produces **zero or more** new key/value pairs, called the **intermediate pairs**
 - key is what the data will be grouped on and value is the information pertinent to the analysis in the **reducer**
 - Choice of key/value pairs is critical and not arbitrary

Map task phases: **Combiner**

- Can **group data** in the map phase
- Takes the intermediate keys from the mapper and applies a user-provided method to **aggregate values** in the small scope of that one mapper
- Significantly reduces the amount of data that has to move over the network.
 - Sending (“hello”, 3) requires fewer bytes than sending (“hello”, 1) three times over the network
Combiner function

- **No guarantees on how many times** Hadoop will call this on a map output record
 - The combiner should, however, result in the same output from the reducer

- **Combiners must be commutative and associative**
 - Sometimes they are also called **distributive**
 - Commutative: Order of operands \((5+2) = 2+5\)
 - Division and subtraction are not commutative
 - Associative: Order of operators \(5 \times (5 \times 3) = (5 \times 5) \times 3\)
 - Non-associative and non-commutative: Vector cross products and matrix multiplication \((AB \neq BA)\) respectively

Map task phases: **Partitioner**

- Takes the intermediate key/value pairs from the mapper (or combiner) and splits them up into **shards**, one shard per reducer

- Default: key.hashCode() % (number of reducers)
 - Randomly distributes the keyspace **evenly** over the reducers
 - But still ensures that keys with the same value in different mappers end up at the same reducer
Map task phases: **Partitioner**

- Partitioner can be customized (e.g. for sorting)
 - Changing the partitioner is rarely necessary

- The partitioned data is written to the local file system for each map and waits to be **pulled** by its respective reducer

In Hadoop a Reduce task has 4 phases

- Shuffle
- Sort
- Reducer
- Output format
Reduce task phases: **Shuffle and sort**

- **Shuffle**
 - Takes the output files written by all of the partitioners and downloads them to the local machine in which the reducer is running

- **Sort**
 - Individual data pieces are then sorted by key into one larger data list
 - Groups equivalent keys together so that their values can be iterated over easily in the reduce task

Reduce task phases: **Shuffle and sort**

- This phase is **not customizable** and the framework handles everything automatically

- The only control a developer has is how the keys are sorted and grouped by specifying a custom Comparator object
Reduce task phases: **Reducer**

- Takes the grouped data as input and runs a reduce function **once per key grouping**
- The function is passed the key and an **iterator over all of the values associated with that key**
 - A wide range of processing can happen in this function: data can be aggregated, filtered, and combined etc.
- Once the reduce function is done, it sends zero or more key/value pairs to the final step, the output format
- N.B.: map & reduce functions will change from job to job

Reduce task phases: **Output format**

- Translates the final key/value pair from the reduce function and writes it out to a file using a record writer
- By default:
 - Separate the key and value with a tab
 - Separates records with a newline character
- Can typically be customized to provide richer output formats
 - But in the end, the data is written out to HDFS, regardless of format
Word Count

- Word count over user-submitted comments on StackOverflow
- Content of the Text field will be retrieved and preprocessed
 - Then count how many times we see each word
- Example record from this data set is:
 - `<row Id="8189677" PostId="6881722" Text="Have you looked at Hadoop?" CreationDate="2011-07-30T07:29:33.343" UserId="831878" />`
 - This record is the 8,189,677th comment on Stack Overflow, and is associated with post number 6,881,722, and is by user number 831,878.
Driver class for the example

```java
public class CommentWordCount {

    public static void main( String[] args) throws Exception {
        Configuration conf = new Configuration();
        Job job = new Job( conf, "StackOverflow Comment Word Count");
        job.setJarByClass( CommentWordCount.class);
        job.setMapperClass( WordCountMapper.class);
        job.setCombinerClass( IntSumReducer.class);
        job.setReducerClass( IntSumReducer.class);
        job.setOutputKeyClass( Text.class);
        job.setOutputValueClass( IntWritable.class);
        FileInputFormat.addInputPath( job, new Path( args[0]));
        FileOutputFormat.setOutputPath( job, new Path( args[1]));
        System.exit( job.waitForCompletion( true) ? 0 : 1);
    }
}
```

Waiting for the job to complete

- The `waitForCompletion()` method on `Job` submits the job and waits for it to finish
 - The single parameter is a flag indicating whether verbose output is generated. When `true` the job writes information about its progress to the console
 - The return value of the `waitForCompletion()` method is a Boolean indicating success (`true`) or failure (`false`), which we translate into the program's exit code of 0 or 1
The Mapper class

```java
public static class WordCountMapper
    extends Mapper < Object, Text, Text, IntWritable > {
private final static IntWritable one = new IntWritable( 1);
private Text word = new Text();

public void map( Object key, Text value, Context context)
    throws IOException, InterruptedException {
    Map <String,String> parsed
        = MRDPUtils.transformXmlToMap(value.toString());
    String txt = parsed.get(" Text");
    StringTokenizer itr = new StringTokenizer( txt);
    while (itr.hasMoreTokens()) {
        word.set( itr.nextToken());
        context.write( word, one);
    }
}
```

Some details about the Mapper class

- Notice the type of the parent class: Mapper <Object, Text, Text, IntWritable>
- Maps to the types of the input key, input value, output key, and output value, respectively.
 - The key of the input in this case is not useful, so we use Object
 - Data coming in is Text (Hadoop’s special String type) because we are reading the data as a line-by-line text document
 - Our output key and value are Text and IntWritable because we will be using the word as the key and the count as the value
The word count Reducer

```java
public class IntSumReducer extends Reducer<Text, IntWritable, Text, IntWritable> {
    private IntWritable result = new IntWritable();

    public void reduce(Text key, Iterable<IntWritable> values, Context context)
        throws IOException, InterruptedException {
        int sum = 0;
        for (IntWritable val : values) {
            sum += val.get();
        }
        result.set(sum);
        context.write(key, result);
    }
}
```

Reducer class

- As in the mapper, we specify the input and output types via the `template` parent class
 - Types correspond to the same things: input key, input value, output key, and output value
- The input key and input value data types must **match** the output key/value types from the mapper
- The output key and output value data types must match the types that the job's FileOutputFormat is expecting
The reduce function has a different signature from map

- Gives you an Iterator over values instead of just a single value
 - We iterate over all values that have that key, instead of just one at a time

- **key** is *very important in the reducer* of pretty much every MapReduce job
 - Unlike the input key in the map.

More about reducer outputs

- Anything passed to `context.write` will get written out to a file
- Each reducer will create one file
Another example (Averages)

October 1, 2019

Another example with the StackOverflow [1/2]

- Given a list of user's comment determine the average comment length per-hour

- To calculate average we need two things:
 - Sum values that we want to average
 - Number of values that went into the sum
Another example with the StackOverflow [2/2]

- Reducer can do this very easily by iterating through each value in the set and adding to a running sum while keeping count.
- But if you do this you cannot use the reducer as your combiner!
 - Calculating an average is not an associative operation
 - You cannot change the order of the operators
 - \(\text{mean}(0, 20, 10, 25, 15) = 14 \) BUT ..
 - \(\text{mean}(\text{mean}(0, 20, 10), \text{mean}(25, 15)) = \text{mean}(10, 20) = 15 \)

Approach to ensuring code reuse at the combiner

- Mapper will output two columns of data
 - Count and average
- Reducer will multiply “count” field by the “average” field to add to a running count and add “count” to the running count
 - Then divide the running sum with running count
 - Output the count with the calculated average
Mapper code

```java
public static class AverageMapper extends Mapper < Object, Text, IntWritable, CountAverageTuple > {
    private CountAverageTuple outCountAverage = new CountAverageTuple();
    public void map( Object key, Text value, Context context) throws IOException, InterruptedException {
        Map < String, String > parsed = MRDPUtils.transformXmlToMap( value.toString());
        String strDate = parsed.get("CreationDate");
        String text = parsed.get( "Text");
        // get the hour this comment was posted in
        Date creationDate = frmt.parse( strDate);
        outHour.set( creationDate.getHours());
        outCountAverage.setCount( 1);
        outCountAverage.setAverage( text.length());
        // write out the hour with the comment length
        context.write( outHour, outCountAverage);
    }
}
```

Reducer code

```java
public class AverageReducer extends Reducer < IntWritable, CountAverageTuple, IntWritable, CountAverageTuple > {
    private CountAverageTuple result = new CountAverageTuple();
    public void reduce( IntWritable key, Iterable < CountAverageTuple > values, Context context) throws IOException, InterruptedException {
        float sum = 0; float count = 0;
        // Iterate through all input values for this key
        for (CountAverageTuple val : values) {
            sum += val.getCount() * val.getAverage();
            count += val.getCount();
        }
        result.setCount( count);
        result.setAverage( sum / count);
        context.write( key, result);
    }
}
```
Data flow for the average example

<table>
<thead>
<tr>
<th>Input key</th>
<th>Input Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hour</td>
<td>Count</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>9</td>
<td>1</td>
</tr>
<tr>
<td>9</td>
<td>1</td>
</tr>
</tbody>
</table>

Setting:
- Combiner executes over Groups 1 and 2
- **DOES NOT** execute on the last two rows

Combiner Output/Reducer Input

<table>
<thead>
<tr>
<th>Output key</th>
<th>Output Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hour</td>
<td>Count</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>9</td>
<td>1</td>
</tr>
<tr>
<td>9</td>
<td>1</td>
</tr>
</tbody>
</table>

Backup Tasks

October 1, 2019
Stragglers

- Machine that takes an unusually long time to complete a map or reduce operation
- Can slow down entire computation

How stragglers arise

- **Machine with a bad disk**
 - Frequent, correctable errors
 - Read performance drops from 30 MB/s to 1 MB/s
- **Over scheduling**
 - Many tasks executing on the same machine
 - Competition for CPU, memory, disk or network cycles
- **Bug** in machine initialization code
 - Processor caches may be disabled
Alleviating the problem of stragglers

- When a MapReduce operation is close to completion
- Schedule **backup** executions of *remaining* in-progress tasks
- Task completed when
 - Primary or backup finishes execution
- **Significantly** reduces time to complete large MapReduce operations

Skipping Bad Records

- Bugs in user code cause Map or Reduce functions to crash
 - Deterministically: On certain records
- Fix the bug?
 - Yes, but not always feasible
- Acceptable to ignore a few records
Skipping bad records

- Optional mode of operation
 1. Detect records that cause deterministic crashes
 2. Skip them

- Each worker installs **signal handler** to catch segmentation violations and bus errors

The contents of this slide-set are based on the following references

- Jeffrey Dean and Sanjay Ghemawat: *MapReduce: Simplified Data Processing on Large Clusters*. OSDI 2004: 137-150