Frequently asked questions from the previous class survey

- Custom Partitioners
 - How often, example?
- How does Hadoop decide whether or not to call the combiner?
Topics covered in this lecture

- Spark
 - Software stack
 - Interactive shells in Spark
 - Core Spark concepts
Spark: What is it?

- **Cluster computing platform**
 - Designed to be fast and general purpose

- **Speed**
 - Often considered to be a design alternative for Apache MapReduce
 - Extends MapReduce to support more types of computations
 - Interactive queries, iterative tasks, and stream processing

- **Why is speed important?**
 - Difference between waiting for hours versus exploring data interactively

Spark: Influences and Innovations

- Spark has inherited parts of its API, design, and supported formats from other existing computational frameworks
 - Particularly DryadLINQ

- Spark’s internals, especially how it handles failures, differ from many traditional systems

- Spark’s ability to leverage **lazy evaluation** within memory computations makes it particularly unique
Where does Spark fit in the Analytics Ecosystem?

- Spark provides methods to process data in parallel that are generalizable.
- On its own, Spark is not a data storage solution.
 - Performs computations on Spark JVMs that last only for the duration of a Spark application.
- Spark is used in tandem with:
 - A distributed storage system (e.g., HDFS, Cassandra, or S3)
 - To house the data processed with Spark.
 - A cluster manager — to orchestrate the distribution of Spark applications across the cluster.

Key enabling idea in Spark

- Memory-resident data
 - Spark loads data into the memory of worker nodes.
 - Processing is performed on memory-resident data.
A look at the memory hierarchy

<table>
<thead>
<tr>
<th>Item</th>
<th>time</th>
<th>Scaled time in human terms (2 billion times slower)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Processor cycle</td>
<td>0.5 ns (2 GHz)</td>
<td>1 second</td>
</tr>
<tr>
<td>Cache access</td>
<td>1 ns (1 GHz)</td>
<td>2 seconds</td>
</tr>
<tr>
<td>Memory access</td>
<td>70 ns</td>
<td>140 seconds</td>
</tr>
<tr>
<td>Context switch</td>
<td>5,000 ns (5 μs)</td>
<td>167 minutes</td>
</tr>
<tr>
<td>Disk access</td>
<td>7,000,000 ns (7 ms)</td>
<td>162 days</td>
</tr>
<tr>
<td>Quantum</td>
<td>100,000,000 ns (100 ms)</td>
<td>6.3 years</td>
</tr>
</tbody>
</table>

Spark covers a wide range of workloads

- Batch applications
- Iterative algorithms
- Queries
- Stream processing

- This has previously required multiple, independent tools
Running Spark

- You can use Spark from Python, Java, Scala, R, or SQL.
- Spark itself is written in **Scala**, and runs on the Java Virtual Machine (JVM).
 - You can Spark either on your laptop or a cluster, all you need is an installation of Java.
- If you want to use the Python API, you will also need a Python interpreter (version 2.7 or later).
- If you want to use R, you will need a version of R on your machine.

Spark integrates well with other tools

- Can run in Hadoop clusters.
- Access Hadoop data sources, including Cassandra.
At its core, Spark is a computational engine

- Spark is responsible for several aspects of applications that comprise:
 - Many tasks across many machines (compute clusters)

- Responsibilities include:
 1. Scheduling
 2. Distributions
 3. Monitoring

Spark execution

- The cluster of machines that Spark will use to execute tasks is managed by a cluster manager:
 - Spark’s standalone cluster manager, YARN, or Mesos

- We submit Spark Applications to these cluster managers, which will grant resources to the application to complete the work
Spark applications

- Spark Applications consist of
 - A **driver** process
 - The driver process is absolutely essential
 - The heart of a Spark Application and maintains all relevant information during the lifetime of the application
 - A set of **executor processes**

The Driver

- The driver process runs your main() function, sits on a node in the cluster
- Driver is responsible for three things:
 - Maintaining information about the Spark Application
 - Responding to a user’s program or input
 - Analyzing, distributing, and scheduling work across the executors
The executors

- The executors are responsible for actually carrying out the work that the driver assigns them.
- Each executor is responsible for only two things:
 - Executing code assigned to it by the driver, and
 - Reporting the state of the computation on that executor back to the driver node.

Architecture of a Spark Application
How Spark runs Python or R

- You write Python and R code that Spark translates into code that it then can run on the executor JVM

SparkSession

- We need a way to send user commands and data to a Spark Application
 - We do that by first creating a SparkSession

- The SparkSession instance is the way Spark executes user-defined manipulations across the cluster.
 - There is a one-to-one correspondence between a SparkSession and a Spark Application
 - In Scala and Python, the variable is available as `spark` when you start the console.
Partitions

- To allow every executor to perform work in parallel, Spark breaks up the data into chunks called **partitions**
 - For e.g., a partition may be a collection of rows that sit on one physical machine in your cluster
- If you have one partition, Spark will have a parallelism of only one, even if you have thousands of executors
- If you have many partitions but only one executor?
 - Spark will still have a parallelism of only one because there is only one computation resource

Manipulation of Partitions

- An important thing to note is that you do not (for the most part) manipulate partitions manually or individually
 - You simply specify high-level transformations of data in the physical partitions
 - Spark determines how this work will actually execute on the cluster.
Transformations

- In Spark, the core data structures are **immutable**
 - They cannot be changed after they’re created

- If you cannot change it, how are you supposed to use it?
 - You need to *instruct Spark* how you would like to modify it
 - These instructions are called **transformations**

More about transformations

- Transformations do not return an output
 - Spark will not act on transformations until we call an *action*
Lazy evaluation

- Spark will **wait until the very last moment** to execute the graph of computation instructions.

- When you express some operation?
 - You do not modify the data immediately.
 - Rather, you build up a **plan** of transformations that you would like to apply to your source data.

Why lazy evaluation works …

- By waiting until the last minute to execute the code
 - Spark compiles this plan from your transformations to a streamlined physical plan that will run as efficiently as possible across the cluster.

- This provides immense benefits because Spark can optimize the entire data flow from end to end.
 - E.g. **predicate pushdowns**
Spark in a nutshell

- Spark is a distributed programming model in which the user specifies transformations
 - Multiple transformations build up a directed acyclic graph of instructions
- An action begins the process of executing that graph of instructions
 - As a single job
 - By breaking it down into stages and tasks to execute across the cluster

Spark APIs

- Spark has two fundamental sets of APIs:
 - The low-level “unstructured” APIs, and
 - The higher-level structured APIs
Structured APIs

- Structured APIs are a tool for manipulating all sorts of data
 - From unstructured log files to semi-structured CSV files and highly structured Parquet files

- Refers to three core types of distributed collection APIs:
 - Datasets
 - DataFrames
 - SQL tables and views

- Majority of the Structured APIs apply to both batch and streaming computation

Spark’s Toolset

- Structured Streaming
- Advanced Analytics
- Libraries & Ecosystem
- Structured APIs
 - Datasets
 - DataFrames
 - SQLs
- Low Level APIs
 - RDDs
 - Distributed variables
Spark has two notions of structured collections: DataFrames and Datasets

- DataFrames and Datasets are (distributed) table-like collections with well-defined rows and columns.
- Each column:
 - Must have the same number of rows as all the other columns (although you can use null to specify the absence of a value).
 - Has type information that must be consistent for every row in the collection.

DataFrames versus Datasets

- DataFrames are considered “untyped”
- Datasets are considered “typed”
How does Spark view DataFrames and Datasets?

- To Spark, DataFrames and Datasets represent immutable, lazily evaluated plans that specify what operations to apply to data residing at a location to generate some output.
- When we perform an action on a DataFrame, we instruct Spark to perform the actual transformations and return the result.
- These represent plans of how to manipulate rows and columns to compute the user's desired result.

The DataFrame is the most common Structured API

- Simply represents a table of data with rows and columns.
- The list that defines the columns and the types within those columns is called the schema.
The DataFrame concept is not unique to Spark

- R and Python both have similar concepts.
 - However, Python/R DataFrames (with some exceptions) exist on one machine rather than multiple machines
 - This limits what you can do with a given DataFrame to the resources that exist on that specific machine
- A Spark DataFrame can span thousands of computers.

THE SPARK SOFTWARE STACK
The Spark stack

Spark Core

- Spark SQL (semi-) structured data
- Spark Streaming real-time
- MLlib & ML machine learning
- GraphX Graph processing

Standalone Scheduler YARN Mesos

Spark Core

- Basic functionality of Spark
- Task scheduling, memory management, fault recovery, and interacting with storage systems
- Also, the API that defines Resilient Distributed Datasets (RDDs)
 - Spark’s core programming abstraction
 - Represents collection of data items dispersed across many compute nodes
 - Can be manipulated concurrently (parallel)
Spark SQL

- Package for working with **structured data**
- Allows querying data using SQL and HQL (Hive Query Language)
 - Data sources: Hive tables, Parquet, and JSON
- Allows intermixing queries with programmatic data manipulations support by RDDs
 - Using Scala, Java, and Python

Semi-structured data and Spark SQL

- Spark SQL defines an interface for a semi-structured data type, called **DataFrames**
 - And as of Spark 1.6, a semi-structured, typed version of RDDs called **Datasets**
- Spark SQL is a very important component for Spark performance
- Much of what can be accomplished with Spark Core can be done by leveraging Spark SQL.
Spark Streaming

- Enables processing of **live streams** of data from sources such as:
 - Logfiles generated by production webservers
 - Messages containing web service status updates
- Uses the scheduling of the Spark Core for streaming analytics on **minibatches** of data
- Has a number of unique considerations, such as the **window sizes** used for batches

MLib

- MLib is a package of machine learning and statistics algorithms written with Spark
- Algorithms include:
 - Clustering, classification, regression, clustering, and collaborative filtering
 - Low-level primitives
 - Generic gradient descent optimization algorithm
- Alternatives?
 - Mahout, sci-kit learn, VW, WEKA, and R among others
What about Spark ML?

- Still in the early stages, and has only existed since Spark 1.2
- Spark ML provides a higher-level API than MLlib
 - Goal is to allow users to more easily create practical machine learning pipelines
 - Spark MLlib is primarily built on top of RDDs and uses functions from Spark Core, while ML is built on top of Spark SQL DataFrames
- Eventually the Spark community plans to move over to ML and deprecate MLlib

Graph X

- Library for manipulating graphs
- Graph-parallel computations
- Extends Spark RDD API
 - Create a directed graph, with arbitrary properties attached to each vertex and edge
Cluster Managers

- Spark runs over a variety of cluster managers
- These include:
 - Hadoop YARN
 - Apache Mesos
 - Standalone Scheduler
 - Included within Spark

Storage Layers for Spark

- Spark can create distributed datasets from any file stored in HDFS
- Plus, other storage systems supported by the Hadoop API
 - Amazon S3, Cassandra, Hive, HBase, etc.
Interactive Shells in Spark

October 3, 2019

Spark Shells

- Interactive [Python and Scala]
 - Similar to shells like Bash or Windows command prompt
- Ad hoc data analysis
- Traditional shells manipulate data using disk and memory on a single machine
 - Spark shells allow interaction with data that is distributed across many machines
 - Spark manages complexity of distributing processing
Several software were designed to run on the Java Virtual Machine

- Languages that compile to run on the JVM and can interact with Java software packages but are not actually Java
- There are a number of non-Java JVM languages
 - The two most popular ones used in real-time application development: Scala and Clojure

Scala

- Has spent most of its life as an academic language
 - Still largely developed at universities
 - Has a rich standard library that has made it appealing to developers of high-performance server applications
- Like Java, Scala is a strongly typed object-oriented language
 - Includes many features from functional programming languages that are not in standard Java
 - Interestingly, Java 8 incorporate several of the more useful features of Scala and other functional languages.
What is functional programming?

- When a method is compiled by Java, it is converted to instructions called byte code and ...
 - Then largely disappears from the Java environment
 - Except when it is called by other methods

- In a functional language, **functions are treated the same way as data**
 - Can be stored in objects similar to integers or strings, returned from functions, and passed to other functions

What about Clojure?

- Based on Lisp

- Javascript?
 - Name was a marketing gimmick
 - Closer to Clojure and Scala than it is to Java
The contents of this slide-set are based on the following references

- Real-Time Analytics: Techniques to Analyze and Visualize Streaming Data. Byron Ellis. Wiley. [Chapter 2]